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Dissipative quantum systems with a potential barrier. 1ll. Steady state nonequilibrium flux
and reaction rate

Joachim Ankerholtl and Hermann Grabert
Fakulta fur Physik der Albert-Ludwigs-UniversitaHermann-Herder-Strasse 3, D-79104 Freiburg, Germany
(Received 4 September 1996

We study the real time dynamics of a dissipative quantum system in a metastable state which may decay by
crossing a potential barrier. Starting from an initial state where the system is in thermal equilibrium on one side
of the barrier, the time evolution of the density matrix is evaluated analytically in the semiclassical approxi-
mation for coordinates near the barrier top. In a region about a critical tempefatlasge quantum fluctua-
tions render the harmonic approximation of the potential insufficient and anharmonicities become essential.
Accounting for non-Gaussian fluctuation modes, we show that the density matrix approaches a quasistationary
state with a constant flux across the barrier. This extends our earlier fddwts. Rev. 551, 4267(1995] on
the quantum generalization of the Kramers flux state to the region d8kouy matching the flux state onto
the equilibrium state on one side of the barrier, we determine the decay rate out of the metastable state. The
rate constant shows a changeover from thermally activated decay to quantum tunneling for temperatures below
T.. [S1063-651X97)01002-7

PACS numbes): 05.40+j, 03.65.Sq, 82.20.Db

[. INTRODUCTION pendent density matrix is adequate. Previously, in article |
[11] we have considered the region of moderately high tem-
Quantum mechanical barrier penetration phenomena cgmeratures where quantum effects are important but the har-
be found in various areas in physics and chemisttyWhile ~ monic approximation of the barrier potential is still suffi-
usually the systems in question exhibit a large number otient. We have shown that the nonequilibrium state becomes
degrees of freedom, in most cases only one variable, thstationary for a large plateau of intermediate times. The cor-
so-called reaction coordinate, governs the escape procesesponding quasistationary flux state is the quantum gener-
However, the interaction of the reaction coordinate with thealization of Kramers’ flux solution of the Fokker-Planck
remaining degrees of freedom is essential and cannot be neguation[2] and can be used to determine the escape rate.
glected. As a consequence, theory must incorporate effects &br lower temperatures, near a critical temperaflie the
a heat-bath environment. In the classical region of thermallysimple Gaussian semiclassical approximation breaks down.
activated decay, generalized Langevin equations and relatéithe instability arises since nedf. new classical paths
methods are adequate. This way, based on the seminal wodkerge in the inverted barrier potenfial]. In article 11[12]
by Kramers[2], escape rates can be determined from theve have extended the calculation of the semiclassical time
stationary nonequilibrium flux across the barrier. dependent density matrix to the region abdyt For a high
In the past decade various theories were formulated fobarrier analytical results for the density matrix are available
rate calculations in the quantum mechanical regi3e9) also in the critical region where large quantum fluctuations
which are based on thermodynamic methods and ultimatelgxplore the anharmonic range of the barrier potential. How-
ad hocrate formulas. The most famous of these rate expresever, one has to go beyond the Gaussian approximation in
sions proposed by Langgt0] relates the decay rate with the the semiclassical evaluation of the path integrals.
imaginary part of an analytically continued free energy. In the present article we use the results of | and Il to
Foundations for a dynamical quantum rate theory, startingletermine the stationary flux state and the related escape rate
from first principles, have been layed only very recently in ain the temperature region abotit. We derive results that
sequence of two articlgd 1,12, which are referred to as | are valid from high temperature down to temperatures
and Il henceforth. The approach is based upon the path inteslightly below T.. At even lower temperatures a simple
gral description of dissipative quantum systefdiS] pio- semiclassical approximation of the path integrals is again
neered by Feynman and Verngh]. This method was used possible but analytical results are usually not available.
by Caldeira and Leggefil5] to describe metastable systems The article is organized as follows. In Sec. Il we briefly
and extended by Grabert, Schramm, and Inddli] to a introduce the real time formulation of the problem and our
wider class of useful initial conditions. In this article the basic notation. In Secs. Ill and IV the semiclassical time
theory is applied to a dissipative quantum system with adependent density matrix is evaluated by determining the
metastable state which may decay by crossing a high poteminimal action paths, the corresponding minimal action, and
tial barrier. Then, a semiclassical evaluation of the time dethe contribution of the quantum fluctuations. This result is
used in Sec. V to derive the stationary nonequilibrium flux
state. The matching of the flux solution onto the thermal
*Present address: Department of Chemistry, Columbia Universityequilibrium state in the well investigated in Sec. VI leads to
New York, NY 10027. a condition on the minimal damping strength required for our
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results to be valid. We also calculate the escape rate, whicls a small dimensionless parameter.

is shown to be identical with the rate for thermally activated Clearly, for an anharmonic potential field the threefold
decay for temperatures aboVg but deviates for lower tem- path integral defining the propagating function in Edy)
peratures. Parts of these results are contained in a thesis bgnnot be solved exactly. However, sinc€1, the dynam-

one of us[18]. ics of the escape process may be determined via a semiclas-
sical approximation of the propagating function for coordi-
Il. TIME DEPENDENT DENSITY MATRIX nates near the barrier top with the small parametserving

as an expansion parameter. This calculation becomes more
In this section we briefly introduce the real time formula- transparent if we introduce dimensionless formulatiorin
tion for the dynamics of dissipative quantum systems andhe following all coordinates are measured in unitsjgfall
Specify the bal’riel’ pOtential. AfterWardS the |n|t|al prepara—frequencies in units O&)O! and a” times in units Of 11‘0.
tion is considered. For sufficiently high temperatures the smallest eigenvalue
for fluctuations about the barrier top
A. Time evolution of the reduced density matrix

and barrier potential 1

1 2
As shown in detail if16] the position representation of A(O)=~ §+ 0 n; =1+ v y(vy) ®)
the time dependent reduced density matrix can be written as " neen

L L is finite and of order 1. Here;,=2mn/ 6 are the dimension-
p(Xg,I¢ ,t):f dxidridxdr J(Xs,r¢,6,X;,r,X,r) less Matsubara frequencies whete wyfi 8 denotes the di-
o mensionless inverse temperature, a}(d) is the Laplace
XN(Xi T, %,r). (1) transform of the macroscopic damping kerngk) describ-
- i _ing the influence of the heat-bath environment. As a conse-
Here,J(x;,r,t,X;,ri,%,r) denotes the propagating function guence, in this temperature range and for moderate to strong
given as a threefold path integral where two path integralgjamping the barrier dynamics is not affected by anharmonic
are in real time and one is in imaginary time. The preparatioferms of the potential over a wide range of tinfsse ). For
function N (x; ,r;,x,r) describes the deviation from thermal |q\yer temperatures, howevén ()| decreases and vanishes

equilibrium in the initial state at a critical temperatur&, determined byA (6.)=0. Then,
the propagating function diverges within the harmonic ap-
p(X¢,rs,0)= f dxdr A (X;,r ¢, X.r)pg(T), (2)  proximation and one has to go beyond a simple semiclassical
approximation(see 1). Hence, neaf . large quantum fluc-

tuations render the harmonic approximation insufficient and
anharmonicities are essential even for coordinates close to
the barrier top and for all times.

wherep z=1trg(Wp) in which Wy is the equilibrium density
matrix of the entire system. A brief summary of the under-
lying theory is given in I.

In the following we consider a system in a metastable

state which may decay by crossing a potential barrier. As- B. Initial preparation
suming that the barrier top is gt=0 andV(0)=0, the gen- The initial nonequilibrium state at time=0 is described
eral form of a symmetric barrier potential reads by the preparation function
o 2k—2 — — —
1 c A(Xi 1%, 1) =X —=X)8(ri=r)O(—r;) (6)
Vig=- oM 1- 3 (L] gz (g - S |
2 k=2 k Qa

so that the initial stat€2) is a thermal equilibrium state re-

Here, thec,, are dimensionless coefficients. We assumetricted to the left side of the barrier only,

c,>0 so that the barrier potential becomes broader than its
harmonic approximation at lower energieg.is a character- p(X.T1,0)=po(Xs, 1) O(—ry). @)
istic length indicating a typical distance from the barrier top ) N _ N
at which anharmonic terms of the potential become essentiafiere. po(x.r) is the position representation of the equilib-
For small|g|<q, the barrier potential is harmonic with fre- fium density matrix. Then, according to E@l), the time
quencyw,. Now, we imagine that the system starts out fromdependent density matrix is given by
a potential well to the left of the barrier. Metastability then
means that the barrier heigh, is much larger than other _
relevant energy scales of the system suchgB and 7 w, PXTy ’t)_f AxdrdOXe XX 1) O (=),
wherefi wg is the excitation energy in the well of the inverted (8)
potential. In | we have introducegh= \%/2M wg as a typical
quantum mechanical length scale which is the variance of th&s in 1, it is convenient to write this equation as
coordinate in the ground state of a harmonic oscillator with
oscillation frequencyw,. SinceV, is related withg,, the p(X¢, I, )= pa(Xe, F)I(Xs M40, 9
conditionVp># wg implies that

whereg(x;,r¢,t) is a form factor describing deviations from

€=0o/0a (4)  thermal equilibrium. From Eqg8) and (126) [19] one has



55 DISSIPATIVE QUANTUM SYSTEMS ... . ll. ... 1357

- The above path integral is over all pathgs),r(s),
Q(thf-t):f dxidrid(Xe, e, 8%, 1) O(=1)/py(Xs,ry), 0<s=<t in real time with
(10)
where X(0)=x;, r(0)=r;, x(t)=x¢, r(t)=rg,

J0Xe T 60 F) =3k P b XX T — L . .
and over all pathgj(o), 0<o=<46 in imaginary time with

1 T i o q(0)=r;—xi/2, q(#)=r;+x;/2. We note thatx;,x; and
=zf DxDrDq GX%EE[X,V,Q]}- ri,r¢ are difference and sum coordinates defined in Egs.
(122) and(123). Z is an appropriate normalization factor and
(11)  the effective actior®[x,r,q] is given by Eq.(128),

%EZ+V($+ %foado’k(a'—a’)ao)aa’) + f:dof(:dSK*(s—ia)ao)x(s)

E[x,r,ﬁzifoedo
L.
+j de{xr =V(r+x/2) +V(r—x/2)—r;y(s)x(s)]
0

. (12

—fds“sds' (s—s’)x(s)f(s’)—i—ftds’K’(s—s’)x(s)x(s’)
0 0 Y 2Jo

Here, the asterisk denotes complex conjugation and the kefactor within the harmonic approximation by performing a
!

nel K(s—io) is specified in Eq(l29). The dimensionless transformation X;,r;)—(x{,r;) defined by X/ =x;
potential field reads —ir;/a, where

1 “c — im S _1.,{«rf
V(Q):_qu 1—22%62k_2q2k_2 ) (13) a wlé{gl 2A(t) 2C01{ 2 ) (14)

Here, wg is the Grote-Hynes frequendy20] given by the

C. Coordinate transformation positive solution ofw§+ a)Ra/(wR)zl. The functionsA(t)
and S(t) describe the unbounded motion at the parabolic

In view of Eq.(9), the dynamics of the escape process is,__ . L :
determined by the time dependent form factbd). In par- barrier and are spemfled in Eq372) and (173). Evaluating
: : : ; these functions for times larger thanw} one gets apart
ticular, we are interested in the stationary flux over the bar-

rier in a region of timgplateau regionwhere the form factor E&rﬁ corrections decaying exponentially in tirfiggs. (183,
becomes nearly independent of time. For sufficiently strong
damping the nonequilibrium region of the flux state is local-
ized in coordinate space, so that the form factor reaches 1 on - _ E 1
. % : . o At)= = = explwgt) (15
the left side of the barrier and O on the right side within a 2 2wg+ Y(wR) + wrY' (wR)
small region around the barrier top. As shown in I, the di-
mensionless width of this nonequilibrium region is of order 1and
for high temperatures whetd | is of order 1 and decreases
with decreasing temperature. Hence, to extend the investiga-
tions of | to the temperature region aroufig, we calculate S(t)=— = = exp(wrt), (16)
the density matrixp(x;,r¢,t) for coordinatesx; and r¢ 2wt y(wRr) T wrY' (wR)

smaller than order 1, i.e., for dimensional coordinajesnd -, . o -~
q' smaller thang. where v’ (w) is the derivative ofy with respect tow. The

From | and 1l we also know that for lower temloeraturesevaluation of the flux solution for higher temperatures car-
the range of initial coordinates andr; which are relevant fied outin I shows that in the new coordinatgsandr;, the
for the density matrix8) in the barrier region increases. In integrals in Eq(10) decouple. The relevant valuesxf are
particular, neaf, these coordinates can be restricted to be of order \JA[ or smaller and those af; at most of order
order 1 only for small times. Furthermore, we have shown inS(t)/\/W. Consequently, the relevant range of tfecoor-
Il that nearT. even for endpoints near the barrier top thedinate decreases with decreasing temperature while the rel-
amplitude of the imaginary time patty(o) becomes very evant range of; increases. This suggests the use of a trans-
large. To determine the relevant range of initial coordinatesformation similiar to that for high temperatures also near
we recall that in | we have calculated the stationary formT, i.e.,
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X! =x;—ir;la+A(r)), (17)  of r; become of ordee” Y2~ as discussed above. Hence, we

' have to extend the perturbative expansion in Il and retain
where A(r;) is a function ofr; only with A(0)=0 which  terms neglected there. However, we perform this expansion
takes into account nonlinear corrections to the linear transenly for the range of coordinates required for the particular
formation. In particular, with the help of the transformation initial state(6) which simplifies the expansion substantially.
(17) one can demonstrate that the relevant values of the anWe remark that in this section the explicit dependence of the
plitude of the imaginary time path(o) remain of the same functionx;=x;(x/{,r;) according to Eq(17) is suppressed to
order of magnitude as the endpomtwhich simplifies the keep the formulas more transparent.
semiclassical approximation enormously.

Now, to determine the stationary density matrix n&ar A. Extremal imaginary time path
we make use of Eq(1l7) and the following assumptions . i . ) )
which will be confirmed self-consistently. First, we assume _F1om Eq.(143) the minimal action path in imaginary time
that anharmonicities of the potential become important fo?P€Yys the equation of motion
temperatures whelié\ | is of ordere or smaller. Second, we ) Av@
evaluate the flux solution only for large timegt>1 where q—_J' do'k(o— o' )’ ) — ——t
A(t) and S(t) are of the form(15) and (16). Hence, we 0 dq
consider times wherA(t) andS(t) are large. To keep track .
of the rele\iant orglers of magnlt.udA(t) and S(t) are gsu— — _if dsK* (s—ia)x(s), (18)
mated bye ™ *® with an appropriate exponenat>0. Third, 0
following the above discussion; is assumed to be at most

of ordere'/2~* andr; to be at most of orde¢ 2~ “. Finally, = Whereq(0)=r;—x;/2 andq(6) =r;+x;/2. The inhomogene-
we assume that the functial(r;) is at most ordee/?-3=, ity on the right hand side couples(c) to the real time

In practice, it is sufficient to consider the limit—0 since =~ Mmotion. I

the plateau region is reached as soomé and S(t) are As already addressed, the amplitudeqgtr) grows near
given by the asymptotic formulad5) and (16). T. and the harmonic approximation breaks down. A detailed

With these assumptions we evaluate the semiclassic@nalysis showssee ) that the imaginary time motion be-
propagating function in Secs. Il and IV. Thereby, the propa-comes marginally stable only in one direction in function
gating function is calculated for real time patkés) and ~ SPace. Hence, to determine the imaginary time path for an
r(s) and imaginary time pathg(c) that are at most of order anharmonic potential near, we follow Il and make the
e Y2« e first determine the minimal action paths and the@nsatz
corresponding minimal action. Afterwards, the contribution
of the quantum fluctuations is calculated. Most of these steps
have already been done in Il so that we omit details here. By
use of the semiclassical propagating function the form factor

I , R .
A(0)= 52, Qusin(10)+Qe(a)+q(0). (19

is then evaluated in Sec. V. Here, ¢(o) denotes the marginal direction in function space
[Eq. (1123)] and Q the corresponding amplitude, while the
IIl. MINIMAL ACTION PATHS function q(o) contains boundary terms and is specified in

Here, we briefly outline the determination of the minimal EQ- (1126). Inserting Eq(19) into Eq.(18) one gets equations
action paths. For a general initial state a corresponding cafor the amplitudeQ,, and forQ (see I). The equations for
culation is performed in 1l to which we refer for further the amplitudesQ, can be solved perturbatively by expand-
details. However, some differences should be noted. First, ifng about the harmonic path. We set
Il we have distinguished between a classical small parameter
& characterizing the influence of potential anharmonicities Q21=Qp 01 €Q2i 1+ O(e%275%), (20
and the quantum mechanical small parametgiven in Eq. N )
(4). The parametet serves as an expansion parameter forVnere theQy o are of ordere =« and describe the solu-
the classical motion while governs the semiclassical ap- t|9r11/2|7r13£he harmonic approximation. THg, , are of order
proximation. Since in the present case the density matrix i§ . . and take into account corrections due to anhar-
calculated for dimensional coordinates within a quantum meMonic terms. This way we obtain from E€L8)
chanical rangdsmaller thang,) around the barrier top, the _
distinction between¢é and e ios not necessary and we set Qa10= ~ui2uixi+2f[x(s) ]} @D
&= €. Second, due to the particular initial sta€g considered
here, the transformatiofi?7) is used advantageously already
for the solution of the equations of motion. The amplitude of )
the imaginary time patly(o) is then readily seen to be at Qy, 1=—2c4eu|J dosin(v,o)
most of the same order of magnitude than the initial coordi- ’ 0
natesx; andr;. In the case of a general initial state consid-
ered in Il, the amplitude ofj(o) may be much larger then A A
X; andr;. On the other hand, the assumption made in Il that TQ¢(0)+alo)
the initial coordinate; andr; are at most of ordee™ ¥* is
too restrictive for the present case, since the relevant valudsere, we used the abbreviation

—1/2—

1 o]
52 Qaisin(1)
=1

3
: (22)
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u=[vi—1+|m|¥(|n)H]1 ~ (23 ~ andalso

— 3/2-5a
Furthermore, the functionafs[x(s)] and alsog,[x(s)] that X(8)=Xo(s) + ex4(s) + O(e ), (30)

appear in the equation fdp (see below describe the cou- where ro(s) and xo(s) may be of ordere ¥2~¢ with
pling to the real time motion and were already given in Egsy,(0)=r,, ro(t)=r; andx(0)=x;, x(t)=x;. The correc-

(127) and(1i28). . tions ry(s) and x;(s) are of ordere ¥?73¢ and obey
For the marginal mode amplitude one has from B®) r1(0)=r1(t)=0 andx,(0)=x,(t)=0.
apart from corrections of ordes> >* Following the steps outlined in detail in 1I, we then obtain
in leading order

1
5241 Qa1 cSiN(v0) G.(s)

A 9
Q- dowio?
0 ro(s)=rn(s)—

[C1(s)—C1(DIri—ixiC{ (V)]

A
26 P =
=b 24 _
*WQ‘“")”(")} 2 +r8<s>+e+<s>[yi<s>—%(t)](b—%29).
with the inhomogeneity (31

— 1 i - The real time path in the harmonic potentig(s) is given in
B 2_0[ fi~ En;x ungn[x(s)]} ' (25 Eq. (166). Further,

Here, as in Il, we have introduced rg(s)=20§,§G+(S)[CI(5)—CI(I)]. 32)
:i 1l2(i) 26
Q= 20 € (26) Here, we have introduced the propagafr(s) of the ho-

mogeneous equation(27) with the initial conditions
to make thee dependence more exp|ICIt A cubic equation G+(0):O, G+(0): 1, which has the Lap|ace transform
similiar to Eq.(24) has been derived previously in Etj41).
However, due to the differences discussed at the beginning G.(2)=[2+zy(z)—1]" L (33
of this section,(l141) contains at most terms linear m,
while in Eq. (24) powers ofr; up tori3 have been retained. The time dependent functioi® (t) are specified in terms of
Yet, the basic properties of the cubic equati@4) are the A(t) andS(t) in Eq. (11102). The functiony;(s) is given in
same as those discussed in I, to where we refer for furtheq. (1183) andb in Eq. (25). Clearly, the last three terms in
details. We only note that for endpoints of order 1 and forEq. (31), which depend through the amplitud@ on the
high temperatures wher\| is larger than ordee?® we  anharmonicities of the potential, obeyry&ry)(0)

recover from Eq(24) the harmonic solution. =(ro—rp)(t)=0. The first partr(s) in Eq. (31) guarantees
that r(s) fulfills the boundary conditionsr(0)=r; and
B. Extremal real time paths r(t)y=r¢. This harmonic path diverges foA —0 while

Let us start by considering the equation of motion for therO(S) remains finite. In first order we gain

pathr(s) which reads according to E42) s
rl(s)=f ds'G.(s—s')Rqy(s’)
0

v d Sd ’ ! 4 1 d / /
r+d—SJ0 Sy(s—s)r(s)+§a[V(r+x2)+V(r—x2)] 6. (9)

S GL(D)

ftds’G+(t—s’)R1(s’) (39
t 4 0
=if ds’K’(s—s’)x(s’)+J doK*(s—io)q(o). (27)

0 0 with

For endpoints in the range assumed above, anharmonic terms P L t
in the potential become larger than ordéf>. Hence, these Rl(s)=f doK*(s—ia)ql(a)vLif ds'K’(s—s")xy(s")
terms cannot be neglected, since they lead to terms at least of 0 0

order 1 in the minimal effective action. We have from Eq. 3
(13 —Cqe| To(S)3+ Zro(s)xo(s)2 : (35
3
> a[\/(r+X/2)+\/(r_x/2)]: —r+c,erd+ 20462”(2 Here, we have used the decomposition
+O(€3l2_ 50(). (28) WU) :%( 0')+ Ea( 0-) (36)

of the imaginary time patt{19) where qo(o) is of order
e Y27« with qo(0)=r;—x;/2 andqqg( ) =r;+x;/2. The cor-
rectioneq, (o) collects terms iry(o) — Q# (o) which are at
r(S)=rq(s)+ er(s)+O(e¥?75) (299  most of ordere*? 3.

The equation of motior{27) can then be solved perturba-
tively using the ansatz
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Finally, let us investigate the equation of motion for the e ¥2~%. Hence, these solutions correspond to trajectories

real time pathx(s). According to Eq.(143) we have
X dftd' ! ’+2dv+/2+v /2
X d—SSSY(S S)X(8")+ 2 [V(r+x/2)+ V(r —x/2)]

=0. (37

Further, from Eq(13) one obtains

d Cy
Zﬁ[V(r +x/2) +V(r —x/2)]= — x+ 3¢ €2xr?+ i e’x8

+0(e3%75), (38

To solve Eq.(37) perturbatively we use the ansadB0). The
equation of motion foy(s) is homogeneous and the back-
ward equation of motion fory(s) for vanishing inhomoge-
neity [16]. Hence, we gain

G, (t—s)
G.(1)

G, (t—s)

Xo(S) =X; +X¢| G, (t—8)—

(39

Further, to next order im one obtaingsee also I the solu-
tion for x4(s) as

3ro(s')%Xg(s)

t
X1(s)= —C46{ Jsds’G+(s’ —-S)

1 G.(t—s) [t
_ 3|+ =7 ’ ’
+ Zx(s") & fodsG+(s)

4

X (40)

3ro(s’)?%,(s") + %xo(s’)?’”.

With Egs. (31) and(34) [(39) and (40)] the solution for
the real time pathi(s) [x(s)] has been found for end points
X¢ andr¢ smaller than order 1 but possibly largeandr; at
most of ordere ¥2~“. In particular, the above analysis

with a turning point near the barrier top which remain there-
fore in the barrier region for all times. In principle, there
exist also trajectories going forth and back through the well
region of the metastable potential. However, as we have dis-
cussed in detail in I, these trajectories give relevant contri-
butions to the density matrix only in a parameter region
which is not relevant here, namely, for extremely long times
and small damping.

IV. SEMICLASSICAL DENSITY MATRIX

In the preceding section we have evaluated the minimal
action paths. Employing the semiclassical approximation we
now expand the functional integrals about these paths. In a
first step one determines the corresponding minimal effective
action(Sec. IV A) and in a second step the quantum fluctua-
tions are considereec. IV O leading to the semiclassical
propagating function.

A. Minimal effective action

According to the investigations in I, the minimal effec-
tive action in an anharmonic potential field can be written in
the form

S (¢, P60, F) =30, T 6%, 1)+ 323X, T 6,0, Xi LT,

(41
where 3"(x;,r¢,t,x;,r;) denotes the harmonic resul68)
and 23(x;,r¢,t,%;,r;) is formally specified in Eq(1178).
Now, we insert the imaginary time patj(c) and the two
real time pathg (s) and x(s) determined in the previous
section into%?. Using the equations of motion, we then get
after some algebra up to terms of order 1

3¢, P X, ) =25(Xe P, b, 1)
_04622?(Xf ,rf ,t,Xi ,ri)-l—O(el*G“)

(42)

shows that both real time paths are also at most of ordewhere

ES(Xf AN ,t,Xi ,ri)

_i +Xi
2|17

1t (o _ o
—EfodsfodaK*(S—IU)XO(S)[QO_Qh](U),

[0~ an)(6) - ( ety

+x¢[ro—rnl(t) —xi[ro—rpn](0)

(43

with the harmonic pathg,(o) andry(s) given in Egs.(I44) and (166), respectively. Furthermore, one gains for the second

term in Eq.(42) the compact result

1 o0
7

i [ __ i [ __
E;Ji_(xfirfvtixivri):ZfoquO(U)4_Efodaqo(a)g

t
+ f dsx(s)C4(s)
0

HQ i J’td ! ’ !
_/'(:4'532+_26C4 . S'Xo(s") ¥(s")

Q2 oSiN(vy0)

11t
+Zf dsro(S)Xo(S)3+4r4(5)3%o(s)]. (44
0

The two expression&43) and (44) are now used to evaluate the minimal effective action explicitly as a function of the
coordinates for times wheregt> 1. It is obvious that the functioR? contains anharmonix; andr; dependent terms, so that
an analytical evaluation of the form factor seems impossible. However, transforming to the cooxdieatording to Eq.
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(17), one finds that the leading ordefr; coupling terms vanish. Also, the amplitu@estudied in the following section is seen
to become at most of order “. With the transformatiorfl7) one gains after a tedious but straightforward calculation

0Q 0Q i0AQ

So(Xe Pt X T =S, 6 (K1), T+ 280K, T, 6% (X, 1), )= — E_ll?axi,+ ewzaA_ Weri
i 1
2 2
———Arfl —+
2az M (4A(t)2 “R
where we have neglected corrections which are exponential small for large times but have kept the leadixgaodier

dependent terms. Evaluatii¥f as a function of the transformed coordinatgsr;, one finds that apart from corrections that
are smaller than order 1 this part of the action is independent of the coordiqadedr;. We obtain

i
—Xi’rin-i-eriA-l- reli+ wrXsls+ EQX%, (45)

i
2aA(t)

t460°%Q° 0
El(xi'ari,t)EET(Xf,rf,tyXi(Xi,,ri),ri):i295D4?_i?/z—ri[F3,1(t)—8A(t)3C3,1(t)—E)’i(t)Dﬂ,}

130Q° , . Q ) 3 —
i TR A0+ 0F5 (O (D] | Frd D+ A IO~ 5 H(DOLF A0~ 4F A1)

T TF (1)~ 160~ 51—y A S A r )
+W"i[ a() — 0,4]_;ri 232 (t)'ﬂl,s(t)_; (1) P34(t)—a 3(0"’5 1(t)

L 20— BAM s+ T E ) (46)
a a1l g1 22202 1301
|
Here, according to Eql137), one has small(see ) and can therefore be neglected. We remark that
a naive estimate of the magnitude of the amplit@ldérom
D :EJ 0d0¢(0)n (47) the cubic equatiori24) and (48) for untransformed coordi-
" 6)o ' natesx;,r; of order e 2 leads neafT, to values ofQ of
order e 3 i.e., © of order e *®. Such large values o

Moreover, we have introduced a set of auxiliary time depenyyqyid require perturbation theory for the minimal action

dent functions, which were in part already used in Il, 10 41hs at quite large orders. However, using the transforma-
describe the influence of the potential anharmonicities on thgg, (17) we find from Eq.(48) for large times

real time motion. These functions are given explicitly in Ap-
pendix A. — . a , Awg _a A ieftd c

_ _ =555 " 20a "1 268017 25 d9%(S)Cu(s).
B. Amplitude of the marginal mode (49)

Before we evaluate the contribution of the quantum fluc- -
tuations, let us write Eq24) for the amplitudeQ in explicit ~ Forx/ smaller than order 1 andl of ordere* 3%, it is now
form. First, by use of the solutio(89) and (40) of the real seen from Eq(24) that nearT the relevant values of the

time pathx(s), one obtains for the inhomogeneity on the amplitudeQ remain of ordere ™ ¢ also for larger;, i.e,Qis

right hand side of the cubic equation then of ordere *27* Hence, the imaginary time path
R g(o) is of same order of magnitude as. This and the
_Ei ro— ! E Ungn[X(S)] decoupling ofx{ andr; in the minimal effective action ex-
20" 6 nn emplify the advantage in using the coordinate transformation
1 (17) to determine the stationary flux solution.
e iyt ~+ Now, Eqg.(49) combines with the right hand side of Eq.
za[r' X Cy (0 =X 2ACL (D] (24) to yield for the cubic equation for the amplitu@e the
et explicit form
€
- o5 asucscys). 8

A 1/29 n3 3 36
ewiQ—CMf 26°D,4Q +C4€§[F3,1(t)
whereC; (t) is given in Eq.(11102). Note that the last term
on the right hand side is of ordet’?. For timeswgt>1 the

3
. _ 3 2, _ 312
time dependent termA(t)C; (t) becomes exponentially 1BAMD Caa(D]QT —Cac™ 27y

a“o
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X EFZYZ(t)—2F2,2(t)+80A(t)2Jz(t) Qr?

1
+Ca€’ g s Fdt) + 46°A0 1 (D]

a AwR

. , . a
=|2—0xi Zeari |29A(ri).

(50
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Since thex; coordinate remains small while becomes
large, it is convenient to set

Q=Qx+Qy,

whereQ, and Q, vanish forx/ =0 andr;=0, respectively.
From Eg.(50) the amplitudesQ, and Q, are found to be
determined by the coupled equations

Ay(Qy )

(51

36c,

The time dependent functiofs, y(t) andF_n,m(t) as well as X 2,4€"%0°D,Q} — € 7 LFaa(®)
Ch m(t) andJ,(t) are given in Appendix A. The behavior of
the amplitudeQ as a function of temperature and coordinates 3 ) oa
following from a cubic equation of the above form has been ~16A(1) Caa(D]Q4Ti= —i 55X (52
discussed in detail in Il and ifl7] to where we refer for
further details. and

A1(Qx,0) 36c, 3c,4 —

— 7 Qi+ ae’26°D,4Q7 — e ——[Fa(t) — 16A()°Co (1) 1QPr + €325 [FoAt) —4F2 A1)

2 2_ o Ca 3 g _Awr @
+166A(1)°3,(1)]Q,r{—€ W[Fls(t)‘“w A1) (t)]r; :mriﬂ EA(ri). (53

In the above equations we have introduced

- 24A(t)?
A(Q,r)=A1(Q,r)+c4e? v
ao
2 1/2J (t) 2
x| 40 QI‘A(I)C3’1('[)+E Tr , (54
where
66c
A1(Q,r)=—A+6c,eD,63Q%— €32 a4F311(t)Qr
) 3c, — )
+ € m[szz(t)—4F2’2(t)]l’ . (55)

As mentioned previously, for high temperatures the coor-

dinater; is of order 1{[A[ in the limit a—0 and Eq.(50)
becomes linear. Then, the p&t of the minimal effective
action given in Eq.(45) leads to the harmonic result69)
and (174) while the second park; in Eq. (46) becomes

smaller than order 1 and can be neglected. This is no longer

the case for temperatur@s=T,, where|A| is of ordere or
smaller and for all temperaturds<T,.

C. Quantum fluctuations and semiclassical
propagating function

With the minimal action45) and(46) we have found the

bution of the real time fluctuations is given by the harmonic
result (175) also for temperatures nedri;,, while a corre-
sponding Gaussian approximation for the fluctuations about
the imaginary time path is only valid for high temperatures.
The simple semiclassical approximation diverges for tem-
peratures neafl, where A—0. As discussed in I, this
comes from the fact that theé direction in function space
becomes unstable. As a consequence, higher order contribu-
tions in the expansion of the imaginary time path about the
minimal action path have to be taken into account. The de-
tailed analysis is given in Il. One finds for the contribution of
the quantum fluctuations for temperatures ngar

| D[n]D[n']D[y]exp{ SSla.0d

_E[qmalqr,na!m'la])]

1 1
" 87|AM)| Jane?

Here, we have decomposed an arbitrary real time path into
q(s) =dma(s) + n(s) whereq,,(s) denotes the minimal ac-
tion path in real time. Thereby, the path&s) andq(s’) are
related to the sum and difference paths considered in the
previous sections byr(s)=[q(s)+q’'(s)]/2 and x(s)
=q(s)—q’(s). Correspondingly, one has for the imaginary

(H vﬁun)K@). (56)

n=1

leading order term of the path integral for the propagatindime pathq(o)=dms(o)+y(o). The contribution of fluc-
function (11). The path integral now reduces to imegra|stuat|ons in the marginal direction in function space is given

over periodic pathg(0)= »(t)=0 and%’'(0)=%'(t)=0 in

real time andy/(0)=y(6#) =0 in imaginary time. Thereby the
relevant fluctuations give a contribution of order 1 to the full
effective action. We have shown in | and Il that the contri-

by

CdYeq-VQY)L, (57

1
K(Q):E



55 DISSIPATIVE QUANTUM SYSTEMS ... . ll. ... 1363

which remains finite fod= 6. . The fluctuation potential for A — 5 s T
the marginal mode amplitude is obtained as Q- 20°C,Dyge Q =5 (62
V(Q,Y):E AL(Q,r)Y2+26%,D,e¥2QY3 apart from corrections smaller than oraef Furthermore,
4 the fluctuation integrakK(Q) is given by Eq.(57) with a

fluctuation potentiaV(Q,Y) of the form(58), however, the

) eigenvalueA 1(Q,r) replace 1(Q,0). According to Eq.
+0o(1) (58 [ lueA 1(Q,r) replaced byA 1(Q,0) di
(11125), the minimal Euclidean action reads

0
+ ZC4D462Y4

where the eigenvalud (Q,r) is given in Eq.(55). Here,

. ; : . . or. QO _
Q, Whlch depends OR; andr;, is determined by the cubic Sy(X¢,T)=1 9%%+ §xf2—c4205D4Q4 +0o(1),
equation(50) or, equivalently, by Eqs(52) and (53). For €
high temperatures E(q56) reduces to the harmonic result (63)

(177). The features of the fluctuation potentl{Q,Y) and
various limits of the fluctuation integr& (Q) as a function
of coordinates and temperature are discussed in Il

Now, with the minimal action and the contribution of the
guantum fluctuations evaluated for smallwe obtain the
semiclassical propagating functighl) as

where we have kept also the leading ordgrdependent
term. Note that this action becomes of order 1 for coordi-
nates of ordeg®?.

According to Egs.(10), (59), and (61) the form factor

takes the form

~ N = . .
\](Xf1rf:tixi,’ri):87T|A(t)|K(Q) g(Xf,rf,t) fdr,U(Xf,rf,t,r|), (64)

i where
XeXD[ E[EO(Xf st r)
Q)

U(X¢,re,t,r)= ! fdx’ K(
—c46221(x{,ri,t)]J. (59) R galAm]) T K(Q)
i
Here, Xexpl'i[EO(xf!rf!tlxilrri)
1 1 - ) )
N= = 2 —Ca€° 21 (X, 1, 1) =Sy(Xs ,r 1) 11 O(—1y).
Z W(H “) (60

(65
whereZ is a normalization constant which cannot be calcu- . . . _—
lated from the equilibrium density matrix near the barrier top!n the semiclassical limit the relevant contributions to the
but depends on the equilibrium distribution in the well re-integrals come from those coordinates andr; for which
gion. The functionS,, is given in Eq.(45) and the function the exponent in Eq(65) is of order 1 or smaller. Since the
3, in EQ. (46). The fluctuation integrakK (Q) is defined in ~ actionSy(x;,ry) is of order 1 or smaller only for coordinates
Eq. 57 and the marginal mode amplitu@®is determined by  Xt.¢ of order €2 or smaller, we may restrict ourselves to
Eq. (50). While related to Eq(11115), the result(59) gives  this range of end coordinates. Furthermore, we asgurhto
only the reduced propagating function introduced in @)  be smaller than orde¢ and show later that the final result

but allows for larger values df, . can be extended to larger values|df]. We start by evalu-
ating thex; integral (65) in the following way. First, we
V. EORM FACTOR consider the integrand for fixed with r; smaller than order

e Y2 (region 1. Second, values of; larger than order
Having evaluated the semiclassical propagating functione= 2 (region 2 are investigated. Both results are then com-
we are now able to determine the time dependent densitigined to determindJ (x;,r¢,t,r;). It is advantageous to use
matrix for large times. According to E9), the nonequilib-  the decompositio®=Q,+ Q, introduced in Eq(51) where
rium state near the barrier top is given by the equilibriumQ, is determined by Eq52) andQ, by Eqg.(53). Also, from
density matrixp(x¢,r¢) and the time dependent form factor Egs.(45) and(46), we write the minimal effective action in
o0(X¢,r¢,t). The equilibrium density matrix for coordinates the form
near the barrier top was already evaluated in(#23). For
the range of end coordinates considered here, namend 3 (x;,r;,t,x/,r)=20(X,r,t,X/ 1)) —Ca€221(X/,1;,1)
r; smaller than order 1, this previous result reduces to
=S (X D) 2 (Xe, P 61) + D (K], 1)

p9<xf,rf>=NK@exr{'§se<xf,rf>}. (61) (9

o with ax; dependent pai,(x/,t)=2(0,0t,x/,0) governing
The amplitudeQ is determined by the cubic equation the convergence of thg/ integral, ax{ independent part
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S (X, Tt 1) =3 (X,T¢,1,0,r;), and a tern®,(x/,r;) con- € Y2 Consequently, the amplitud®, is independent of;

taining the remainingr; coupling terms. apart from corrections smaller than order 1 and it can be
determined from Eq(52) for Q,=r;=0. Furthermore.,,
A. Region 1: Smallr; and, are both smaller than order 1 so that the above analy-

. . sis forr;—0 extends in the semiclassical limit to finite
First let us consider the casg=0. Then, from Eq(53 | 5jues smaller than order 2

we see th_aQ,=O/ so thatQ, in Eq. (52) is a time indepen- We are interested in the leading ordgrdependence of
dent function ofx; only. Accordingly, we obtain from EQs. the form factor which determines the flikL25) across the
(45) and (46) barrier. Now,x; dependent terms iB, are at most of order

60 € and are therefore relevant for tihgintegration(64) only

S D=3 (X )=~ ?,zfaxi’—Zic4D405Q§, (67) I‘or| sTaII values ofr;. From Egs.(45) and (46) we get for

ri|<<

which is also independent of time and coincides after the i

formal replacementax/ —r; with the diagonal part of the =, (X¢,r¢,t,r))=|Xsl jor+ Eﬂxf S(t) o reri|[1+o(1)].

action(63) in the exponent of the equilibrium density matrix 71)

(61. In the same way, the fluctuation integt&(Q) from

Eqg. (57) reduces tK(Q) in the prefactor of the equilibrium Here, the second term proportional >t6 is removed in the

density matrix (61) with Q substituted byQ,. Further, exponent of Eq.65) by the x; dependence of the action

3«(X{,0)=0 and the remaining term in E¢66) is indepen-  Sy(Xs,r¢). Further, the® function restricts the; integration

dent ofx/ and given by (64) to the halfplane;=<0. Now, as in Eq(I90) we perform
a shift smaller than order 1,

[
(X, 1,0) =X fopt EQX?- (68) r=r{ +iS(t)x; . (72

This is of ordere for coodinates of ordee? Hence, one In view of S(t)/S(t) = wg following from Eq. (16), the ex-

obtains for thex/ integration in Eq(65) for r;=0 an integral  ponent in Eq.(65) then becomes independent xf. Since

of the form this shift is smaller than order 1 it causes only additional
x; dependent terms il,, which are smaller than order'?
and can therefore be neglected. Thus, one has forr the

(69) dependent exponent in E@5) in the region of small values
of r{

fdx K(Qy )ex;{ (X)) |-

Here,a is the coefficient{14) in the transformatioril7), and
the prefactor is chosen for convenience. SikKq®),) is at
most of ordere 2, it is readily seen that the relevant con-
tribution to the integral comes from thogg values that are

112 - : S(t)
of ordere*< or smaller. Correspondingl, is then at most

of order 1. For high temperatures where| is larger than \yhile the upper bound of the/ integration is given by
order e, the fluctuation integral reduces #(Q,)=1/\|A| o

H _ _ia2y’2 H _ . . . .
and the aCt'IOQEEX_ 1a°; “/2A. Thus, we re?]aln_ the halr The above analysis gives the integral in E64) for all
yo.mc freSLét Ilb ::(t)f: tempe_raturels nedr, : l:? mtelgrzT o yalues ofr/ smaller than ordee ™2 apart from corrections
IS ot order ut the precise vaiue must be calculaleqy icn gre vanishing in the limig—0. We find

numerically. In terms of the integrall’ the function

2 (Xf rf1t-r|)+2xr(x|' |) SH(Xf O)

—— 1/ +0(%?), (73

U(X¢,r¢,t,r;) defined in Eq(65) reads forr;—0 1 Y i
U(Xfarfvtar'):——_exi{ S(Orf):|
PR S | p[ s et " Al KQ) '
Xf,l’f, JNi))=——— —eXp — = Xf,l’f, f .
" Vam|si] K(Q) 27 X O[—r! —iS(t)x(]. (74)
_So(xfyrf)]]®(_ri), (70) Due to the shift(72) the integrand in Eq(64) is overr/
values on a line parallel to the real axis where the argument

where we have ke, (x¢,r,t,0), which is at most of order of the © function is real.

€ but contains the leading ordgjr; dependent terms. Now,
with increasingr; the amplitudeQ, also increases anxr;
coupling terms might become relevant, i.e., of order 1 or As a next step we consider the integrand in Ep) for
larger. InsertingQ=Q,+ Q, into Egs.(45) and (46), one  values ofr; which are larger than order ¥ but at most of
finds that forx; of order €2 and smallr; the leading order ordere™ ¥27¢, In this regionx/r; coupling terms irS,, be-
coupling terms inX,, are removed by a functiom come of order 1 or larger and are therefore essential. Further-
«€Y2Q, . From Eq.(53) we then conclude thdd, is smaller  more, for A(r;) of order €¥?"3¢ as assumed above, one
than order 1 for coordinates that are smaller than order readily sees from Eq(53) that Q, is then of ordere™“.

B. Region 2: Larger;
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Accordingly, r; dependent terms in the cubic equatic?®) 66

for Q, can no longer be neglected. It should be noted that in +iC4€a7Qr,on,ori2[Fz,z(t)+ 0F 31(t)]
region 2 the coordinate; and the shifted coordinate co-

incide apart from terms that are negligible in the semiclassi- _ Quo 3

cal limit. We now proceed in the following way. First, the +|C4€3/2aT'0ri [ Figt)+ 0°A(1)Js(t)
amplitudesQ, and Q, are calculated in the approximation

needed, and the as yet unknown functibis determined by 3 _
the condition that leading ordeq r;-coupling terms in3.,, ~ 5 Yi(DO[Fa = 4F 2] (81)
are removed. Afterwards, th€ integral is evaluated leading
to U(x T tri) in fl?zqion 2. B Inserting Q, o from Eq. (76), these terms are removed by
Forx; of ordere™ “ andQ, of ordere”“ Eq.(52) can  choosing a functiom = €'?Q3,. In view of Eq. (53), this
be solved perturbatively using the ansatz implies thatQ, o= €Y?r; . To obtain explicit results we set
Qy=Qyot €29Qy 1+ O(€59), (75 Qo=€"ria/2a (82)
whereQ, o andQ, ; are both of ordek®. Inserting this an- and
satz into Eq(52) we find
o) , 4
A(ry)=icy—g €T} . (83
H 1/2,,1 ao
_ia €
Qxo=~ 20 Kl(Qr 0.T) (76) Inserting these expressions into E§L), one obtains from
’ the conditions?,=0 that
and 5
sa)=5 60°D 40— 66’3(12{ Fa1(t)—12A(1)%Cy (1)
F3a(t) —16A(1)3Cg 4(t
Gzan’1:30C4€3/2 3,1( )K (Q ( ) )3,1( ) riQiO, p 3 o
a e 2., _z
1 r,0-0i (77) 4’y|(t)D4:| 2Bq[szz(t)+4F2’2(t)+40F3V1(t)
The leading order terms of the amplitu@® , that are rel- — 166A(1)2J5(1) ]+ 26wrA1(q)
evant for the exponent in Eq65), can be evaluated in a 3 L
similiar way using + 5 %i(O[F220) = 4F (1) ]~ 0A(1) 4 (1)
Qr=Q ot €*Q; 1+ 0(€>), (78)

1
- 5F1,3(t)- (84)

whereQ, o and Q, ; are both of ordere™ * (for A—0). In
leading order the amplitud®, o is independent ok{ and  Here, we have introduced the abbreviation
given by the cubic equatiofb3) with A;(Q,,0)=0. For the

next order term we simply obtain Q) =A1(e¥%g/2,a)/ch€? 5o 0 (85)
A1(Qy0.0) This result is now inserted into the cubic equati@3) for
€°Q, ;= — ~1—x,o,Qr 0- (79 Q; o, leading to a cubic equation fay. We obtain
' A1(Qr0.14)
. . . ' 5 0
Now, insertingQ, andQ, into Egs.(45) :i\gd(46), we find 303D4q3—30q2[ “Faq(t)— 5 Dy 20+ ¥i(1)]
for the dominant coupling terms of order “* the result 2 2
ST D =200 D[ 1+ 0(€29)] (80) —32A(t)3Cs,1(t)] —3QK Faa(O[20r+ yi(1)]
with 3 o) 4—
—32wRA(t) C3’1(t)_ 16A(t) 9 + EFZVZ
, 0Qro0_, 6Qxo ,
S5 ==~ ax + - ad - x{rog CFudt) i) 8(0)

~ %5 +A(t 0 7z (86)

126°
—Qie g5 3 12 2 , ) ) _
8ic,0°D4Q7 (Qx ot iCae a Qr,oQxdfi In particular, the above results confirm the assumptions made
previously thatA is at most of ordeg?~ 3¢ while Q, is of

0 ordere™ ¢ or smaller for values of; that are at most of order
X|F34(t)—8A(1)3Ca (1) — E?’i(t)D4 e U2-a !
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The remaining coupling terms i, are of order 1. These
terms are simply removed by scaling tkecoordinate in the o(Xs,rs,t)= ——f i
following way. ForQ, of ordere® andQ, of ordere™ “ the Va7 S()[K(Q)

14

fluctuation integral K(Q) in Eg. (65 reduces to i

K(Q)=K(Q,)=1/A1(Q,0.r;) apart from corrections Xexp[ E[Er(o,rf,t,r{’g(t)l’z)—sg(o,rf)]
smaller than order 1. Hence, scaling tie coordinate ac-

cording tox{ =x{/\JA1(Q, o,r;) and insertingQ, andQ, as XO[—r!—iYS(t)xq]. (90)

well asA from Eq. (83 into the action, one can show that

2 (X'VA1(Qy 0.1i),1i,1) is independent of;. This com-  For small values of{ in region 1 thex; dependence of the

bines with the contribution from,, to yield the exponent for argument of the® function is essential whil&, is smaller

thex{’ integration in Eq.(65) than order 1. Correspondingly, the above integrand reduces
to Eq. (74). On the other hand, for{ in region 2 thex;
dependence of th® function can be neglected and the inte-

S X VA L(Qr 0,11, D)+ 2y (X VA L(Qr 0,1), T, 1) grand in Eq.(88) is regained fore—0.
i The result(90) can be brought into a more convenient
- Eg(t)a2x§’2+o(1). (87) form. To this purpose we put
z=(r'—rd)/|S(1)], (91)

Here, the functior(t), which is positive and of order 1, is Y i o

given in Appendix B. In view of the above result th¢ ~ Where the shifri" is defined implicitly by

integral in Eq.(65) becomes Gaussian with relevant contri- 0 1 _

butions from the domain wherex{ is of order 2 Or it =S,(0r ) =0. 2
VA1(Qy o,1i) or smaller, i.e.x{ is at most of ordee *as  For temperatures close @, where A is smaller than order

assumed previously. _ . e, ther; dependence of can be determined analytically.
Accordingly, we get in the semiclassical limit for values Then, the linear term in Eq62) can be neglected against the
of r; larger thane™ %2 the result cubic one with the result
P ( rf 1/3
L i Q=- ﬁ) : (93
U(X¢, e t,r)= —exprE[E,(O,rf,t,ri’) 46%c,D4e'?
VA (1)|S(1)[K(Q)

Inserting this solution into Eq(63), one obtains from Egs.

—SG(O,rf)]]@[—ri’—i's(t)xf]_ 89) (89 and (92

20 —
= n(H)S(t) - Q, (94)
Here, from Eqs(45) and (46), the exponenk,, reads T €2

where 5(t) is determined by the quartic equation

!

Y= —ir f—— / 2D, (t 3
Er(oarf 1t1r| ) Irf|S(t)| +IC4€ a.4 r| ’ (89) 77(t)4 0[")( ) _ n(t)g(t)llz_l_ Z:0 (95)
4
whereo,(t) is given in Appendix B. with
. . t
C. Stationary flux solution near T, D,(t):S(t)“U;g)§(t)2=16A(t)4ar(t)§(t)2. (96

To gain the form factor we now combine the resyltg)
and(88) for U(x¢,r¢,t,r;,X;) in regions 1 and 2. It is useful
to scale the| coordinate according to=r/Y in region 1
andr{'=r//\/{(t) in region 2. Since both scaling factors are S(r;,z,t)=3,(0s(,t,2|S(t)| (1) Y2+ r2L() YD) — Sy(0r ()
of order 1, these transformations do not modify the regions 1 _
and 2. Now, forr; of ordere/? the actionS, in Eq. (89) is of =iD,(t)e?z*—ip(t)D,(t)86c,e>’QZ
order 1 ifr] is of ordere Y2~ but 3, becomes smaller o s
than order 1 for smaller values of within region 2. Hence, +in(1)"D,(1)246%C4€Q°z
the exponents in Eq$74) and(88) coincide near the bound- _ 8D, (t)
ary of regions 1 and 2. Furthermore, tRefunction in Eq. +irsz oD, "
(749 may be approximated near the boundary by 4
O[—r{—iYS(t)x(]=0O[—r{], while in region 2 we have We note that in deriving this equation one has to take into
O[—r/—iS(t)x;/£(1)¥?]=0[—r] apart from negligible account thas(t)<O0.
corrections. The results in region 1 and 2 can thus be Now, with Eq.(97) we have transformed the exponent in
matched to yield the form factor ned, Eqg. (90) into a quartic polynomial ire with Q-dependent

This way the exponent in E¢90) takes the form

3(t)—¢(t)Y?]. 97
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coefficients. Clearly, for an initial equilibrium distribution, 20 —

that is formally for®[ - ] replaced by 1, the form factor must u(x,r) = _nQ+iY wex. (102
reduce tog(x,rs,t)=1. This suggests to compare the ex-

ponentX with the fluctuation potentia¥/(Q,z) in Eq. (58)  Here, the fluctuation integral as well as the corresponding
which is also a quartic polynomial i@ with the sameQ  fluctuation potential are defined in Eg&7) and (59), re-
dependence of the coefficients as in ESf7). We recall that  spectively, withA ,(Q,r) replaced byA,(Q,0). Further, the
the above results are valid provided the asymptotic formulaﬁqtegrw Y is given in Eq.(69). Since K(Q) is of order
(15) and (16) for the functionsA(t) and S(t) can be used. -2 j is readily seen that the width of the diagonal part
Then, a detailed analysis given in Appendix B shows that u%ﬂ(o"rf) is of ordere'2. For larger positive coordinates

tﬁ cc;rrect_ions which gr[e) negligibl_e (ijn the gemiclzfis_sical Iin:jit’the functionu(O,r;) is negative and larger than order 1 so
the functions{(t) and D,(t) are independent of time an that g /(X ,r{)—0. On the other hand, for negative and

given by |r¢| larger than ordee? the functionu(0,r;) is positive and
larger than order 1 so thads(X;,r;)—21. In particular,
01(0,0)=1/2. We note that a formal continuation of the high
{()=¢=1, D(t)=D,=5D,. (98)  temperature resul1102) would lead to a vanishing width at
T. showing again the breakdown of the harmonic approxi-
mation. Further, evaluating Eq97) in the region of time
where EQ.(99) is valid and forz=r?/S(t), we find with
3,(0r¢,t,0)=0 that

As a consequence, one obtains from E®p) the real and
time independent solutiop(t) = »=1, so that from Eq(94)

the shift r{=S(t)26Q/€"% We note that 2Q/€? is the
unscaled marginal mode amplitu@e Now, we find that the
exponent in Eq(97) is also independent of time with

i J—
ESH(O,H):V(—Q,U(OM))- (103
i%(r¢,z,t)2=i%(r¢,2)/2=-V(-Q,2), (99 This identity holds also for high temperatures and ensures
. that the form factor describes a nonequilibrium state with a
and the form factor may be written as stationary flux across the barrier which is independent of

position(i.e., ofr;) as will be seen below.

Although the calculation presented above was carried out
for temperatures wherg\| is smaller than ordee, the fluc-
tuation potential can now be used to extend @§J) both to
) higher and lower temperatures. This way we gain the central
XO[—z|S(t)|—rP—iYS(t)x¢]. (100  result of this article, namely, the expression

1 -
g(xf,rf,t>=m—K@f dzexd —V(-Q.2)]

The two relations in Eq(99) are valid only in an intermedi-

ate region of time(plateau region A lower bound comes P11 (Xs 1T 1) = polXs ,rf);_fU(Xf,rf)dz

from employing the asymptotic formuld46) and (17) that VATK(Q)J =

are only valid for Xexp(wgt). There is also an upper bound —

of time since corrections to the minimal effective actidd) xexg —V(—-Q,2)] (104

must be smaller than order 1. Accordingly, we obtain from _ ] _ ]
Eq. (42) the relationa<1/6. In particular, anharmonic terms for the stationary flux solution valid from high temperatures
in the barrier potentia(13) of the form c,e2¢ 2% with down to temperatures slightly beloW, . Here, the equilib-
k>2 are then smaller than order 1. Hence, in the limit offium density matrix near the barrier tap(x;,r+) is given in
small e the plateau region can be estimated, as far as ordefsd- (61) andu(x;,ry) in Eq. (102). For temperatures above
of magnitude are concerned, by '<t<|In(e)|. Further- T. where|A]| is larger than ordee the solution of the cubic
more, from the fluctuation potentiés8), the relevant values €quation(62) readsQ=e"?r(/26A. Then, the fluctuation po-
of z in Eq. (100) are at most of ordee”¥2. Since the order tential reduces to V(Q,z)= —AZ%/4 and therefore
of magnitude of; is given byS(t)z, this confirms the basic K(Q)=1/J/A. Hence, the high temperature res(it02) is
assumption that; is at most of OYdGEfllzw- _ regained. For temperatures beldwthe amplitudeQ grows
Now, after the transformatior/ =2 —iY wg the integral  and terms such as,eQ® neglected in the actiof63) become
(100 gives only contributions if z'<ri/S(t) where  of order 1. Accordingly, the above flux solution can be used
S(t)<0. Hence, the stationary form factor for temperaturespnly down to temperatures<T, where A is smaller than

nearT. may be written as order €23,
1 u(xg .re) _ D. Relation to equilibrium quantities
9n(Xp.re)= /4_77K(6f—w dzexd —V(=Q.2)], Before we proceed, let us collect the main formulas

(101) needed to get explicit values fpg (X; ,r¢). For given damp-
ing mechanismy(z) and inverse temperatutethe marginal
where mode amplitudeQ is determined from the cubic equation
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(62) as a function of ;. This leads to the actioB,(x¢,r¢) in E. Form factor slightly below T,
Eq. (63) and the fluctuation potential As we have already discussed in Il aid], for tempera-
_ 1 L L tures belowT . whereA is larger than ordeg, the fluctuation
V(Q,Z)=Z{(—A+6C46D403Q2)22+ 26%c,D,€%°Q7° integral matches again onto a simple semiclassical approxi-

mation. Here, we consider the corresponding limit for the
flux solution. First, we investigate the equilibrium density
(105 matrix (61) and afterwards the form factdt01).
For coordinates near the barrier top the cubic equation can

. . oo . be solved perturbatively for temperatures whares larger
from which we can gain the fluctuation integka(Q) intro-  ha ordere. Using e/ A 32 as a small parameter we obtain for

duced in Eq(57). On the one hand, these quantities give theha stable branches the approximate result
equilibrium density matrix

0
+ ZC4D4EZZ4

_ e
— i QSEZSQT'(_rf)<iQo+_|"f|
po(Xs,re)= NK(Q)eXF{ESH(Xf ,rf)}- (106 sn 40\
€32 3rf2
On the other hand, they also determine the form factor of the AR 160%(2,6°D ) 2 +0(e¥A%), (111

stationary flux solution(104).

In particular, we may relate the functidh defined in Eq.
(69), which appears in formulél02) for u(x;,r¢), with equi-
librium quantities. Scaling the integration variabifeaccord-
ing to g=ax]_and comparing the cubic equations @y in
Eqg.(52) andQ in Eq.(62) as well as the exponeit,(x;/) in
Eqg. (67) with the actionSy(0ys) in Eq. (63), we see that

which is valid for end points; smaller than orden®? e.
Here, Q¢ denotes the branch which extends from the high
temperature region to lower temperatures wi@llg, is the

branch which newly emerges neBs. The amplitudeQ, of
the positive stable branch fog=0 is given by

Q«(9)=Q(ig) and2,(q)=S,(0,iq). Hence,Y can be ex- o A 12
pressed in terms of the analytically continued equilibrium Qo=<—3 ) (112
density matrix 2C4€6°Dy

Y ! f dap,(0.iq) Now, inserting Eq(111) into the action(63) we have
- i
Jamn) G

(AN 1 f2h M2
1 _ i Spxet) =1\ 2] 5c5p, | Ze,0m,) MlTian
- — | dax@iiane3s,0i)|. @07
vl 2 i
+ EQx$+ O(elA%?). (113

Here, the amplitud€® must be evaluated from E¢62) with

r; replaced byiq. The analytic continuation gf,(0,q) leads

to a convergent integral for coordinates within the barrier
region. Moreover, the quantity can be shown to be only a
function of the scaled bifurcation parameter

Since the equilibrium density matrix ne@x and for coordi-
nates near the barrier top is independent of the particular root
of the cubic equatior{62), it is convenient to evaluate the
fluctuation potential at the stable brandQg.. Then,
A_=A/JT40D4- (108 V(Qse,Y) exhibits two minima and one local maximum. The
first minimum atY=0 corresponds t®s, while the second
From Egs.(105 and(107) we find thatY may be written as one atY, =(Qg,— Q.0 26/ €' is associated with the stable
branchQg,,. These minima are well separated for tempera-
—— tures where\ is larger than ordee by a local maximum the
exf —V(Q.y)]. height of which is larger then order 1. Accordingly, in this
(109  temperature range the fluctuation potential may be written in
the form[17]

— 1 o —, 3=,
Y(A):EJ dg dyexp —AQ +§Q

Here, O=Q(26%,D,) Y is determined from\Q—Q3=iq_

with q=q/(260€%c,D,)Y4 and the scaled fluctuation poten- — A,
tial reads V(Qse,Y)=5Y (114
—_— 1 — ~. y? : .
V(Q,y)= 7 (—A+3Q3)y2+Qy°+ 5 (1109  for fluctuation amplitudey” aroundY=0 and
. . — A
As a consequence, we obtain the important result that the V(Qse,Y)=AS(r¢) + E(Y_Y+)2 (115

stationary flux solution is completely determined by proper-
ties of the equilibrium density matrix near the barrier top
evaluated already in II. nearY=Y . with
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[ 2A |12 1 i 2
AS(r1)=5[Spse O 1) = Spisn(Or 1) 1= 26,00, Irl. Yz—zexr{isg;se(0,0)H dxcogx)
27A 0
(116
Hence, the fluctuation integréb7) reduces to + fo dxcos(x)exr( - W)
0 X2
— 1 +if dxsin(x)exr{ - —) . (122
K =—={1+exd —AS(r . 11 - 2
(Qse) \/ﬁ{ ] S(re) 1} (117 12 8A

) ) ) ) o ~ The second integral is exponentially smdlbf order
matrix for temperatures beloW;. For coordinates of order orger €2/A2 which formally is of orderf. Hence, in the

e/\/A or smaller we then have semiclassical limit, the first integral which is of order 1 leads
to
L 0 A2 L A2
po(xfirf)_ﬁex > 9.5 X1,0) | COS 262,60, rel, Y= exp(—), (123

whereA is given in Eq.(108).

Now, from Eq.(104) one gains with Eq4114)—(117) and
8121) the form factor for temperatures slightly beloWy
here a simple semiclassical approximation is again valid as

whereN is given by Eq.60). The typical width of the mini-
mum is of ordere/\/A. For end pointg; within this region
both contributions of the stable branches must be taken int
account, while for larger end points the consistent semiclas?

sical approximation is determined by the brar@k, only. 1
Accordingly, forr; of ordere/\/A or larger but smaller than ~ 9s(X¢,r¢) = 5{1+9XF{—A5(H)]}71

order A%? e we gain
A 1/2
erfc[_(g) use(xfyrf)}

A 1/2
+exr[—AS(rf)]erfo{—<§) usn(xf,rf)H.
(119 (124

X

N
po(Xg, )= ﬁexl{ 2 Sp;se(X+,0)

A 1/2 r%
XeXF{(ZeszDA‘) I+ x|

Here, erfck)=(2/\7) [ dzexp(-Z). For r¢< (>)0 the
function ug(0r) is positive (negative while ug,(0r) is
negative(positive and the arguments of the erfc functions
are both larger than order 1. Furthermore, for valuef gf

~ Qs @) =Qsd(— 1), the fluctuation potentiaV(—Qse,2)  |arger then ordek/\A the function exp—AS(r;)] becomes
can be written in the forni114) and(115 with Y, replaced exponentially small. Accordingly, we then have

by —Y, . From Eq.(103 we then find forY=u¢40,r) and gn(x,r)~1—sgn(;)] as expected. In particular, we
Y+Y, =usy(0r), respectively, gain g;,(0,0)= 1/2 with AS(0)=0. The width of the diago-
nal partgs (0,r;) of the nonequilibrium state is therefore of
) i ordere/\/K which is again of the same order as the width of
E[Uzi(o’r)] ZESﬂ;zi(O,r). (120 the minimum ofp,(0y;). Since the amplitud®, increases
with increasing inverse temperature the above analytical re-

A simple calculation using Eq113 leads in leading order Sults are restrictedmto temperatures beldw where A is
to smaller than ordee~".

To illustrate these results we have depicted in Fig. 1 the
_ diagonal pargy,(0,q) of the form factor for various tempera-
0Qoy Ir|| . tures and Ohmic damping with=3 ande=0.05. For these
u:(x,r)=sgr(—r)( Tty | tiYerx. (12D parameters 6,=5.0@.... For T/T.=1.15 above and
T/T.=0.85 belowT, the function|A| is slightly larger than
The integralY is expressed in Eq(109 in terms of the € AS one sees, the width gf,(0,g) decreases with decreas-
analytical continued equilibrium density matrix,(0,q). N9 temperature since thermal fluctuations also decrease.
Now, the resultg118 and (119 can be used to evaluae  NearT. the width is of ordere' while below T, the width
in the semiclassical limit. For convenience, we choose théaturates at a value of order _
matching point of both results at;=7(€c,6D 4/2A)Y? Figure 2 shows the quantity’ as a function ofA.
With cosh{x)=cos), wherex=q(A/2e%c,6D,)*? we then  Thereby, the integrals in E¢109) are evaluated numerically
obtain from Eq.(109 by inserting the brancl®s.. For A>0 and coordinates

Clearly, for end points of ordee/\A the result (118
matches onto Eq119).
Let us now turn to the form facton(101). Since
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valid from high temperatures down to temperatures slightly
below T.. As we have shown, the density matrix
piu(Xs,r¢) depends on local properties of the barrier potential
only. Since, the metastable system is in thermal equilibrium
in the well region, the flux state must reduce to a thermal
equilibrium state for coordinates on the left side of the bar-
rier at a distance from the barrier top smaller than the typical
distance 1¢ between the barrier top to the well bottom. In |
we have shown that this implies a condition on the minimal
damping strength. Here, we first give a corresponding con-
dition for temperatures neaf.. Afterwards, this result is
used to derive the decay rate out of the metastable state from
the flux solution.

q A. Matching to equilibrium state in the well

For coordinatesy;,q; on the left side of the barrier the
FIG. 1. Diagonal party;(0,0) of the form factor of the station-  form factor(101) must approach 1 as one moves away from
ary flux sqution(lO4)Aas a function of the scaled coordinatdor the barrier top. Inr coordinates this means that
Ohmic damping withy=3 and various values of the temperature
ratioT/Tc. |1_gf|(Xf,rf)|<1 (125)

for values ofx;,r; away from the barrier top. One can esti-
mate the region in the half-plamg<<0 where Eq.(125 is
valid following the lines of reasoning in I. We find

where exp—ASq)]<1, the contribution of the b_rancﬁ_sn,

which corresponds to a second minimum\ifQ..,Y), is
neglected according to E¢L17). Note that in the semiclas-

sical limit Y is real. One sees thaf=1 up to negligible 2/r| |18
corrections down to temperatures néar. For temperatures Ix¢| < e fD ) (126
below T., however,Y increases exponentially according to 2YwR\/¢_9 € 0C404

Eq.(123. This reflects the fact that below. the equilibrium I . o
density matrix(118) depends strongly on the classical action Furt.he.r, from Eq(61) the equilibrium density matrix is non-
vanishing essentially only for

Sy(0,0) of nonlocal paths in the inverted potential and is no

longer of a Boltzmann-like form. This means that bel®w 23/ 3\ 12 1

guantum tunneling strongly enhances the probability to find |Xf|<_f,_(_) — (127)
; 73 176"

states near the barrier top. e~ Q) (46c4Dy)

On the one hand, there should be valugs<0 with
VI. MATCHING TO EQUILIBRIUM STATE |r¢| <1/e where the two condition£126) and (127) hold si-
IN THE WELL AND DECAY RATE multaneously. On the other hand, we have to ensure that in

In the previous section we have found an analytical ex—Eqs'(126) and (127 the coordinatgx;| is also much smaller

. . an 1k. To estimate this latter condition we consider values
pression for the stationary flux state of a metastable syste%} r, within the typical width of the diagonal part of the

nonequilibrium state. Then, only relatiqid27) is relevant
and yields

Q> €. (128

Now, a detailed analysis shows that EfR8) gives the most
stringent condition on the minimal damping strength.

Up to this point we have used the dimensionless formu-
lation introduced in Sec. Il. Now, in order to facilitate a
comparison with earlier results we shall return diomen-
sional unitsfor the remainder of this section. Then, condition
(128 reads

Q ﬁwg 129
> (129

wherew, denotes the oscillation frequency at the barrier top,
FIG. 2. The functionY given in Eq.(69) as a function of the V), the barrier height with respect to the well bottom, and
scaled bifurcation parameter (solid line). The dashed line repre- () is given in Eq.(1111). Following the discussion in I, we
sents the approximate resilt23 valid for temperatures slighty make EQq.(129 more explicit by considering a Drude model
belowT.. See text for details. with y(t) = ywpexp(-wpt). Since the conditiori129 is rel-
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evant for small damping only, the functida(3,vy) can be oy wrY o vﬁ+ Vna,( Vn)+w5v

expanded according to EQ118). In particular, for vanish- =— 5 - > | exp(— BVp).
ing damping one hasf.=wyhB.=m which leads to 2T @0 | n=1 vht vyy(vn) — wf
Q(7/ woh,0)=0. To determine the critical inverse tempera- (139

ture for small damping from\ (B.,y) =0 we expand\ ac- o
cording to Eq.(1116). Then, we putwghB.= 7+ & with Here, the Grote-Hynes frequeneyg [20] is given by the

£<1 and obtain in leading order positive solution ofw§+ wR&(wR)zwg. When this is com-
pared with the resulfl127) we see that the anharmonicities
E=—4yN' (7l woh), (130  of the barrier potential lead to an additional fac¥rin the

vicinity of T,. The functionY is expressed in Eq107) in
where A'(B)=dA(B,y)/d¥|,-o is given in Eq.(1117).  terms of the analytically continued equilibrium density ma-
Note that the correctiog is positive since\’(8)<<0. With  trix p,(0,iq) near the barrier top and depicted in Fig. 2. As

this value forgB, the condition(129 simply reads already discussed in Sec. V E one has 1 from high tem-
peratures down to temperatures néar while below T,
fiwg quantum tunneling causes an exponential increade dhis

> Vi’ (131 behavior depends essentially 8g(0,0) that is the action of

classical paths in the inverted barrier potential with
wherex is given in Eq.(1121). q(0)=—q(6) andq(0)=—q(6). For T>T, the only pos-
In the limit wp> wq,y the Drude model behaves like an sible path is then the trivial ong(o)=0 with S,4(0,0)=0
Ohmic model except for very short times of ordewgd/  while for T<T, oscillating solutions with differeng(0) and
Then, nears; one obtainsc=In(wphiB)/m [see Eq(l1122)].  g(0) but the same nonvanishing action emerge.

Accordingly, Eq.(131) reads Hence, for temperatures aboife we recover from Eq.
(135 the well-known result for thermally activated decay
> hwom (132 including quantum correctior21] while for lower tempera-
Y VpIn(wpfiB) tures quantum tunneling leads to an enhancement of the rate.

This behavior of the escape rate differs from predictions
Comparing this with the high temperature result we see thabased on purely thermodynamic meth¢8s9]. A semiclas-
both conditions coincide for temperatures slightly abdye sical approximation of the functional integral for the parti-
where Eq.(1123) is still valid. However, in contrast to the tion function together with an analytic continuation accord-
high temperature case, the region of damping where the fluing to Langer[10] yields for the fluctuation modes the
state derived here becomes invalid is very narrow for temejgenvalues\?= 12+ v,y(v,) — w3. The first eigenvalue

peratures near and beloty, . \? vanishes at a temperatifg<T,. In the undamped case
one hasTy=T./2. The eigenvaluesﬁ are characteristic for
B. Decay rate the imaginary time motion in a harmonic barrier potential

If condition (131) is satisfied the flux solution can be used and the thermodynamic rate theory does not lead to an insta-

to determine expectation values, in particular, the decay rat@ility nearTe.

' out of the metastable state. From Etl24) one has in In the rate formula135) the A, appear since aroun,
coordinate representation only the marginal mode amplitud® is affected essentially

by anharmonicities of the potential. However, for lower tem-

peratures the magnitude of the imaginary time path increases
(133 and anharmonicities are important for all eigenvalues of the

second order variational operator in the fluctuation path in-
. . tegral. As a consequence, the rate formda5 is then no
Here,J; denotes the unnormalized flux at the barrier top. 'tlonger valid and its corresponding extension to low tempera-

is_ wo_rthwhile to note thatf=0_ iS‘. Chose'_‘ in EQ(133) for  yre5 exhibits no singularities for temperatures near and be-
simplicitly only since the flux is indeed independent of the|OW To.

particular value ofr; as can readily be verified with Eg.
(103. The normalization constaizt is approximated as in |

Ry .
=Z <M a—Xan(Xf, )

X¢=0

by the partition function of a damped harmonic oscillator ACKNOWLEDGMENTS
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Z= 7 > = 2 eXF(BVb).
wwh B | n=1 vpt vn¥(vn) + oy,
(134 APPENDIX A: AUXILIARY FUNCTIONS

Here,V,, denotes the dimensional barrier height with respect_ N this appendix we collect functions needed in Sec. IV.
to the well bottom andb,, is the well frequency. Inserting These functions can be evaluated for given inverse tempera-

Eq. (104, which is valid for high temperatures as well as for turé ¢ and macroscopic damping kerne{s) or Laplace
temperatures slightly belo®,, into Eq.(133 we obtain in  transformy(z).
dimensional units The F, (t) andF, ,(t) describing the influence of an-
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tdsQ(t,s)Gi(t,t—s)“*'Gf(t,t—s)3‘”"

harmonicities on the imaginary time motion are defined by
In,m(t):jo

20
F“‘”‘(t)zﬁfod“‘ﬁ(g) X[Ci(9)-Ci OITRLS)-REHI" (A7)

0 m A .
« E U, co Vna)ftdS%(S)Gi(t,S) contain botrp_f(s)_ andR(t,;). Thesg latter functlons_ do not
n=—o 0 appear explicitly in the main text since for convenience we
have introduced the linear combinations
(A1)
and 1 2 2
Ji(H)= §C1,3(t)_6a C1 () —24A(1)"154(1)
— 2 (0 1 ~ 1— V| A’)/( V|)
Fn,m(t)=—f dod(o)™ = (20— 0)+ >, uj| ————= +24aA(t) 14 4(1) (A8)
6 0 4 =1 yl )
¢ m and
+J dsfi(s)Gi(t,s) Sil’](vm)} . (A2)
0 Jo()=2A(t) 1 At) +aCpy(t). (A9)

Here, the auxiliary functiong,(s) andf,(s) are defined in 1,4 functions(t), Cpy (1), ¥ m(t), andl, (t) are given

Egs. (1129) and (lI30), respectively, and Gi(t,S) a5 integrals over timesOs<t with integrands which vanish
- G+(t—s)/_G+(t). . . . _ats=0 ands=t. The integrands become exponentially small
To describe the anharmomc_real time motion we need f'VEfor timess where the asymptotic formuld45) and (16) are
classes of functions. The functions valid.
. In general, these functions can be evaluated explicitly
Fm(t):f dsG(t,5)"G(t,t—s)* ™™ (A3) only numerically. _However,_ln the limits of var_1|sh|ng and
0 very strong damping analytical results are available. Let us
first consider the case of vanishing damping. Then, only the
whereG¢(t,s)=G..(t)dG(t,s)/dt remain finite for vanish-  functions D, defined in Eq.(47), and F,, (t) as well as
ing damping. The other functions describe damping induceg®_(t) are finite while the other ones vanish. Since the aux-
couplings between real time and imaginary time paths. Th‘ﬂiary functions g,,(s)=f,,(s)=0, the functionsF_n (t) are
function v;(t) was already introduced in E!83). Further, independent of time. Then, with= — sin(o)/2 the integrals
defining the relevant functions can be done analytically. We

t .
Cn,m(t>=f Gi(t,t—95)"Gi(t,9)"G(t,t—s)* """ obtain
0

X[C{(s)—Ci(D]" (A4) D4:§1, F_ZYZ:ZW—;S_ (A10)

and
The functiond™,(t) are not relevant since the corresponding
t . . prefactors in the minimal effective action vanish in the un-
elfn,m(t):fodSG(t,t—S) Gi(t,s) damped case.
For very strong damping the equatizh+zy(z)=1 has a
X Gy(t,t—9)*"""MR(t,s) - R(t,t)]". (A5)  very small positive solutionng~1/y with y=%(0), while
the negative solutions are of orderor larger. As a conse-
Here, the functionC; (t) defined in Eq.(11102) reduces to quence, the functioA(t) contains transient terms for times
C; (t)=—a for times where the asymptotic formul&$5) of order 1/ or smaller only. Then, from the asymptotic form

and (16) are valid. In this region of time one has (15 we see that for times %Kt<y one has
A(t)=—1/2y. Hence, we gain in leading order in this range

. S(s) A(s) of time v;(t)=1y. Furthermore, with increasing damping

R(t,s)= —2wgra+ wRT(S)"i_am strength alsof., increases so that; becomes very small.

Thus, the leading order terms of the functions defined above

1 * are determined by the static frictign As a consequence, for
+M > [UnCOSfEVn(t—S)] times 1h<t<1y these functions become in leading order
n=-—x

independent of time with

04

t
+f ds'[A(s'—s)—A(s—s')]cosh v, (t—s")]}. —
| o Feap Foamggg

2 2ym — 1
D4:?, Fam=

(AB) (A11)

Finally, the functions The functionsI',(t), C, n(t), ¢nm(t), and 1, 4(t) are at
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most of order 17 since the integrands in these time integralsnumerically for Ohmic damping withy(t)=2y48(t). This
give essential contributions only within a time interval of shows that the results for strong damping can be used for
order 1/. We have evaluated the above functions alsoy=4.

APPENDIX B: ¢(t) AND D, (t)

In Sec. V we have introduced two auxiliary functiof@@) andD,(t) given by

1
+ ZF3,1(t) X[yi(t)+2wg]

3 30 7 3 0
(== D,6°q°—6q ZFs,l(t)_z‘]A(t) C3,1(t)_z[7i(t)+2wR]D4

()

+ 1o Fad)~BF 2401+ DADZ,(0)+ BogA() Casl1) (BY)

and
D, (t)=16A(1)*¢(t) %0 (1) (B2)
with

° 5 4 3~3 o 3 5 2 2 F_Z,Z(t) 0
or(1)= g 0°D40"+ 6707 5Da[B8wr+t ¥i()]+32A(0)°Caa(t) —5F34(1) [ —120°9% —— — gwrDa[ 20+ %i(1)]

)

) ,da(t ; — )
+l—6F3,1(t)[12wR+ Yi(O]=A(t) T_lowRA(t) Caa(t) [ ~6wrA) 2F2 () + SF3(D[20r+ 7i(1)]

— 160wrA(1)3C31(t) — BA(t)2J,(t)

1 — 3 — 1
+ gﬁ[lGFOA(t)— FodD)]+ 2_0“:2,2('[) —4F, A1) ][2wg+ yi(1) ] — WFl,B‘(t)

48 2 1 3 3 a 2
X[40r=7(D]= 0RAMIL() + - 0rd2(D) + S A 141 =8AL) 3 1(1) —a’T5(t) + 7 T1(1) — 12aA1) i 1(1)

—B6A(t)a%y 4(1). (B3)

Obviously, the functiong(t) andD,(t) depend explicitly on  (g5) one obtainsk;(q;)=3/64 up to exponentially small
A(t) but not onS(t). After determining the solutiog of the  corrections. Further, evaluating thénfrom Eq. (B1) one
cubic equatior(86) they can be calculated numerically with fings 7(t)=¢=1. To determineD, we have to take into
the functions defined in Appendix A. account that for vanishing damping.=m so that

In the sequel we study andD;, for vanishing and strong a=cot(A42)/2=S(t)=0. Since S(t)/a remains finite for
damping which allows for analytical results. First, for van-|5rge times, the functiod, (t) is nonvanishing also for van-
ishing damping one ha&(t) = —sinh()/2 andS(t) =aA(t)  ishing damping. Now, due ta=0 the terms containing the
so that the transient term exp() in A(t) andS(t) decreases functionsT,(t) vanish. Then, inserting, into Eqg.(B3) and
on the same time scale on which the asymptotic term i”tollecting the remaining terms one obtains

creases in time. As a consequen&ét)/A(t) contains expo-

nentially small terms for times>1 which are, however, not 37 [ A(t)? 2 3.

negligible, and one must resubstitutg by A(t)/A(t) in the Ur(t)z@(w_ ) 25_12W- (B6)
above formulas. This way using EGA10) the cubic equa-

tion (86) reduces to This leads with Eq.(B2) to D,(t)=D,=3#/512. On the

other hand Eq(A10) leads to6D,/8=3#/512 and thus to
Eqg. (98) in this limit.

For very strong damping and timesyXt<y one can set
A(t)/A(t)=1/y. Accordingly, we gain in leading order from

A) g A1)
Wq3+q2m—§=—h3ﬂ_ A(t) (B4)

This equation has three real solutions Eq. (86) in this range of time
A(t) 1 Y, 7
=——) =t+—. B5 3-2-g°- -5q=0.

From Eq.(55) one readily sees that only the solutignis  The only solution which is stable and extends continuously
stable while the other ones are unstable. Insedinmto Eq.  to the high temperature solutiog=—1/y# is given by
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q,=0. A more detailed analysis taking into account alsowhich leads toD,=1/46°. On the other hand, EqA10)

next order terms shows thatoO(1/y). Then, we obtain
from Eq. (B1)

3 _
{)=g=1 o gl1+0(WNI=1+0(1ly). (B

Furthermore, one has from E@3)

4

o)== 75 1+O0(1/)], (89

gives 6D ,/8=1/46°.

This way we have shown analytically for vanishing and
very strong damping in the region of time where the asymp-
totic formulas (15) and (16) are valid that/=1 and
D,=6D,/8 up to corrections negligible in the semiclassical
approximation. Since we were not able to verify these rela-
tions in general, we have performed numerical calculations
for Ohmic damping withy(t)=2y48(t) confirming the va-
lidity of Eq. (99).
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