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Dissipative quantum systems with a potential barrier. III. Steady state nonequilibrium flux
and reaction rate

Joachim Ankerhold* and Hermann Grabert
Fakultät für Physik der Albert-Ludwigs-Universita¨t, Hermann-Herder-Strasse 3, D-79104 Freiburg, Germany

~Received 4 September 1996!

We study the real time dynamics of a dissipative quantum system in a metastable state which may decay by
crossing a potential barrier. Starting from an initial state where the system is in thermal equilibrium on one side
of the barrier, the time evolution of the density matrix is evaluated analytically in the semiclassical approxi-
mation for coordinates near the barrier top. In a region about a critical temperatureTc large quantum fluctua-
tions render the harmonic approximation of the potential insufficient and anharmonicities become essential.
Accounting for non-Gaussian fluctuation modes, we show that the density matrix approaches a quasistationary
state with a constant flux across the barrier. This extends our earlier results@Phys. Rev. E51, 4267~1995!# on
the quantum generalization of the Kramers flux state to the region aboutTc . By matching the flux state onto
the equilibrium state on one side of the barrier, we determine the decay rate out of the metastable state. The
rate constant shows a changeover from thermally activated decay to quantum tunneling for temperatures below
Tc . @S1063-651X~97!01002-7#

PACS number~s!: 05.40.1j, 03.65.Sq, 82.20.Db
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I. INTRODUCTION

Quantum mechanical barrier penetration phenomena
be found in various areas in physics and chemistry@1#. While
usually the systems in question exhibit a large number
degrees of freedom, in most cases only one variable,
so-called reaction coordinate, governs the escape pro
However, the interaction of the reaction coordinate with
remaining degrees of freedom is essential and cannot be
glected. As a consequence, theory must incorporate effec
a heat-bath environment. In the classical region of therm
activated decay, generalized Langevin equations and rel
methods are adequate. This way, based on the seminal
by Kramers@2#, escape rates can be determined from
stationary nonequilibrium flux across the barrier.

In the past decade various theories were formulated
rate calculations in the quantum mechanical regime@3–9#
which are based on thermodynamic methods and ultima
ad hocrate formulas. The most famous of these rate exp
sions proposed by Langer@10# relates the decay rate with th
imaginary part of an analytically continued free energ
Foundations for a dynamical quantum rate theory, star
from first principles, have been layed only very recently in
sequence of two articles@11,12#, which are referred to as
and II henceforth. The approach is based upon the path
gral description of dissipative quantum systems@13# pio-
neered by Feynman and Vernon@14#. This method was used
by Caldeira and Leggett@15# to describe metastable system
and extended by Grabert, Schramm, and Ingold@16# to a
wider class of useful initial conditions. In this article th
theory is applied to a dissipative quantum system with
metastable state which may decay by crossing a high po
tial barrier. Then, a semiclassical evaluation of the time
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pendent density matrix is adequate. Previously, in articl
@11# we have considered the region of moderately high te
peratures where quantum effects are important but the
monic approximation of the barrier potential is still suffi
cient. We have shown that the nonequilibrium state becom
stationary for a large plateau of intermediate times. The c
responding quasistationary flux state is the quantum ge
alization of Kramers’ flux solution of the Fokker-Planc
equation@2# and can be used to determine the escape r
For lower temperatures, near a critical temperatureTc , the
simple Gaussian semiclassical approximation breaks do
The instability arises since nearTc new classical paths
emerge in the inverted barrier potential@17#. In article II @12#
we have extended the calculation of the semiclassical t
dependent density matrix to the region aboutTc . For a high
barrier analytical results for the density matrix are availa
also in the critical region where large quantum fluctuatio
explore the anharmonic range of the barrier potential. Ho
ever, one has to go beyond the Gaussian approximatio
the semiclassical evaluation of the path integrals.

In the present article we use the results of I and II
determine the stationary flux state and the related escape
in the temperature region aboutTc . We derive results tha
are valid from high temperature down to temperatu
slightly below Tc . At even lower temperatures a simp
semiclassical approximation of the path integrals is ag
possible but analytical results are usually not available.

The article is organized as follows. In Sec. II we briefl
introduce the real time formulation of the problem and o
basic notation. In Secs. III and IV the semiclassical tim
dependent density matrix is evaluated by determining
minimal action paths, the corresponding minimal action, a
the contribution of the quantum fluctuations. This result
used in Sec. V to derive the stationary nonequilibrium fl
state. The matching of the flux solution onto the therm
equilibrium state in the well investigated in Sec. VI leads
a condition on the minimal damping strength required for o
y,
1355 © 1997 The American Physical Society
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1356 55JOACHIM ANKERHOLD AND HERMANN GRABERT
results to be valid. We also calculate the escape rate, w
is shown to be identical with the rate for thermally activat
decay for temperatures aboveTc but deviates for lower tem
peratures. Parts of these results are contained in a thes
one of us@18#.

II. TIME DEPENDENT DENSITY MATRIX

In this section we briefly introduce the real time formul
tion for the dynamics of dissipative quantum systems a
specify the barrier potential. Afterwards the initial prepa
tion is considered.

A. Time evolution of the reduced density matrix
and barrier potential

As shown in detail in@16# the position representation o
the time dependent reduced density matrix can be writte

r~xf ,r f ,t !5E dxidridx̄dr̄ J~xf ,r f ,t,xi ,r i ,x̄, r̄ !

3l~xi ,r i ,x̄, r̄ !. ~1!

Here,J(xf ,r f ,t,xi ,r i ,x̄, r̄ ) denotes the propagating functio
given as a threefold path integral where two path integ
are in real time and one is in imaginary time. The preparat
function l(xi ,r i ,x̄, r̄ ) describes the deviation from therm
equilibrium in the initial state

r~xf ,r f ,0!5E dx̄dr̄ l~xf ,r f ,x̄, r̄ 8!rb~ x̄, r̄ !, ~2!

whererb5trR(Wb) in whichWb is the equilibrium density
matrix of the entire system. A brief summary of the und
lying theory is given in I.

In the following we consider a system in a metasta
state which may decay by crossing a potential barrier.
suming that the barrier top is atq50 andV(0)50, the gen-
eral form of a symmetric barrier potential reads

V~q!52
1

2
Mv0

2q2F12 (
k52

`
c2k
k S qqaD

2k22

q2k22G . ~3!

Here, thec2k are dimensionless coefficients. We assu
c4.0 so that the barrier potential becomes broader than
harmonic approximation at lower energies.qa is a character-
istic length indicating a typical distance from the barrier t
at which anharmonic terms of the potential become essen
For smalluqu!qa the barrier potential is harmonic with fre
quencyv0. Now, we imagine that the system starts out fro
a potential well to the left of the barrier. Metastability the
means that the barrier heightVb is much larger than othe
relevant energy scales of the system such askBT and\v0,
where\v0 is the excitation energy in the well of the inverte
potential. In I we have introducedq05A\/2Mv0 as a typical
quantum mechanical length scale which is the variance of
coordinate in the ground state of a harmonic oscillator w
oscillation frequencyv0. SinceVb is related withqa , the
conditionVb@\v0 implies that

e5q0 /qa ~4!
ch
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is a small dimensionless parameter.
Clearly, for an anharmonic potential field the threefo

path integral defining the propagating function in Eq.~1!
cannot be solved exactly. However, sincee!1, the dynam-
ics of the escape process may be determined via a semi
sical approximation of the propagating function for coord
nates near the barrier top with the small parametere serving
as an expansion parameter. This calculation becomes m
transparent if we introduce adimensionless formulation. In
the following all coordinates are measured in units ofq0, all
frequencies in units ofv0, and all times in units of 1/v0.

For sufficiently high temperatures the smallest eigenva
for fluctuations about the barrier top

L~u!52
1

u
1
2

u (
n51

`
1

nn
2211nnĝ~nn!

~5!

is finite and of order 1. Here,nn52pn/u are the dimension-
less Matsubara frequencies whereu5v0\b denotes the di-
mensionless inverse temperature, andĝ(z) is the Laplace
transform of the macroscopic damping kernelg(s) describ-
ing the influence of the heat-bath environment. As a con
quence, in this temperature range and for moderate to st
damping the barrier dynamics is not affected by anharmo
terms of the potential over a wide range of times~see I!. For
lower temperatures, however,uL(u)u decreases and vanishe
at a critical temperatureTc determined byL(uc)50. Then,
the propagating function diverges within the harmonic a
proximation and one has to go beyond a simple semiclass
approximation~see II!. Hence, nearTc large quantum fluc-
tuations render the harmonic approximation insufficient a
anharmonicities are essential even for coordinates clos
the barrier top and for all times.

B. Initial preparation

The initial nonequilibrium state at timet50 is described
by the preparation function

l~xi ,r i ,x̄, r̄ !5d~xi2 x̄!d~r i2 r̄ !Q~2r i ! ~6!

so that the initial state~2! is a thermal equilibrium state re
stricted to the left side of the barrier only,

r~xf ,r f ,0!5ru~xf ,r f !Q~2r f !. ~7!

Here, ru(x,r ) is the position representation of the equili
rium density matrix. Then, according to Eq.~1!, the time
dependent density matrix is given by

r~xf ,r f ,t !5E dxidriJ~xf ,r f ,t,xi ,r i ,xi ,r i !Q~2r i !.

~8!

As in I, it is convenient to write this equation as

r~xf ,r f ,t !5ru~xf ,r f !g~xf ,r f ,t !, ~9!

whereg(xf ,r f ,t) is a form factor describing deviations from
thermal equilibrium. From Eqs.~8! and ~I26! @19# one has
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g~xf ,r f ,t !5E dxidri J̃~xf ,r f ,t,xi ,r i !Q~2r i !/ru~xf ,r f !,

~10!

where

J̃~xf ,r f ,t,xi ,r i ![J~xf ,r f ,t,xi ,r i ,xi ,r i !

5
1

ZE DxDrDq̄ expF i2S@x,r ,q̄#G .
~11!
ke
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The above path integral is over all pathsx(s),r (s),
0<s<t in real time with

x~0!5xi , r ~0!5r i , x~ t !5xf , r ~ t !5r f ,

and over all pathsq̄(s), 0<s<u in imaginary time with
q̄(0)5r i2xi /2, q̄(u)5r i1xi /2. We note thatxi ,xf and
r i ,r f are difference and sum coordinates defined in E
~I22! and~I23!. Z is an appropriate normalization factor an
the effective actionS@x,r ,q̄# is given by Eq.~I28!,
S@x,r ,q̄#5 i E
0

u

dsF12q̇̄21V~ q̄!1
1

2E0
u

ds8k~s2s8!q̄~s!q̄~s8!G1E
0

u

dsE
0

t

dsK* ~s2 is!q̄~s!x~s!

1E
0

t

ds@ ẋṙ2V~r1x/2!1V~r2x/2!2r ig~s!x~s!#

2E
0

t

dsF E
0

s

ds8g~s2s8!x~s! ṙ ~s8!2
i

2E0
t

ds8K8~s2s8!x~s!x~s8!G . ~12!
a

lic

ar-
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Here, the asterisk denotes complex conjugation and the
nel K(s2 is) is specified in Eq.~I29!. The dimensionless
potential field reads

V~q!52
1

2
q2S 12 (

k52

`
c2k
k

e2k22q2k22D . ~13!

C. Coordinate transformation

In view of Eq. ~9!, the dynamics of the escape process
determined by the time dependent form factor~10!. In par-
ticular, we are interested in the stationary flux over the b
rier in a region of time~plateau region! where the form factor
becomes nearly independent of time. For sufficiently stro
damping the nonequilibrium region of the flux state is loc
ized in coordinate space, so that the form factor reaches
the left side of the barrier and 0 on the right side within
small region around the barrier top. As shown in I, the
mensionless width of this nonequilibrium region is of orde
for high temperatures whereuLu is of order 1 and decrease
with decreasing temperature. Hence, to extend the inves
tions of I to the temperature region aroundTc , we calculate
the density matrixr(xf ,r f ,t) for coordinatesxf and r f
smaller than order 1, i.e., for dimensional coordinatesq and
q8 smaller thanq0.

From I and II we also know that for lower temperatur
the range of initial coordinatesxi and r i which are relevant
for the density matrix~8! in the barrier region increases. I
particular, nearTc these coordinates can be restricted to be
order 1 only for small times. Furthermore, we have shown
II that nearTc even for endpoints near the barrier top t
amplitude of the imaginary time pathq̄(s) becomes very
large. To determine the relevant range of initial coordina
we recall that in I we have calculated the stationary fo
r-
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factor within the harmonic approximation by performing
transformation (xi ,r i)→(xi8,r i) defined by xi85xi
2 ir i /a, where

a5 lim
vRt@1

S~ t !
2A~ t !

5 1
2
cotSvRu

2
D . ~14!

Here,vR is the Grote-Hynes frequency@20# given by the
positive solution ofvR

21vRĝ(vR)51. The functionsA(t)
and S(t) describe the unbounded motion at the parabo
barrier and are specified in Eqs.~I72! and ~I73!. Evaluating
these functions for times larger than 1/vR one gets apart
from corrections decaying exponentially in time@Eqs. ~I83,
I84!#

A~ t !52
1

2

1

2vR1ĝ~vR!1vRĝ8~vR!
exp~vRt ! ~15!

and

S~ t !52
a

2vR1ĝ~vR!1vRĝ8~vR!
exp~vRt !, ~16!

where ĝ8(v) is the derivative ofĝ with respect tov. The
evaluation of the flux solution for higher temperatures c
ried out in I shows that in the new coordinatesxi8 andr i , the
integrals in Eq.~10! decouple. The relevant values ofxi8 are
of order AuLu or smaller and those ofr i at most of order
S(t)/AuLu. Consequently, the relevant range of thexi8 coor-
dinate decreases with decreasing temperature while the
evant range ofr i increases. This suggests the use of a tra
formation similiar to that for high temperatures also ne
Tc , i.e.,
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xi85xi2 ir i /a1D~r i !, ~17!

whereD(r i) is a function ofr i only with D(0)50 which
takes into account nonlinear corrections to the linear tra
formation. In particular, with the help of the transformatio
~17! one can demonstrate that the relevant values of the
plitude of the imaginary time pathq̄(s) remain of the same
order of magnitude as the endpointr i which simplifies the
semiclassical approximation enormously.

Now, to determine the stationary density matrix nearTc
we make use of Eq.~17! and the following assumption
which will be confirmed self-consistently. First, we assum
that anharmonicities of the potential become important
temperatures whereuLu is of ordere or smaller. Second, we
evaluate the flux solution only for large timesvRt@1 where
A(t) and S(t) are of the form~15! and ~16!. Hence, we
consider times whereA(t) andS(t) are large. To keep track
of the relevant orders of magnitude,A(t) andS(t) are esti-
mated bye2a(t) with an appropriate exponenta.0. Third,
following the above discussion,xi8 is assumed to be at mos
of ordere1/22a andr i to be at most of ordere

21/22a. Finally,
we assume that the functionD(r i) is at most ordere

1/223a.
In practice, it is sufficient to consider the limita→0 since
the plateau region is reached as soon asA(t) andS(t) are
given by the asymptotic formulas~15! and ~16!.

With these assumptions we evaluate the semiclass
propagating function in Secs. III and IV. Thereby, the prop
gating function is calculated for real time pathsx(s) and
r (s) and imaginary time pathsq̄(s) that are at most of orde
e21/22a. We first determine the minimal action paths and t
corresponding minimal action. Afterwards, the contributi
of the quantum fluctuations is calculated. Most of these st
have already been done in II so that we omit details here.
use of the semiclassical propagating function the form fac
is then evaluated in Sec. V.

III. MINIMAL ACTION PATHS

Here, we briefly outline the determination of the minim
action paths. For a general initial state a corresponding
culation is performed in II to which we refer for furthe
details. However, some differences should be noted. Firs
II we have distinguished between a classical small param
j characterizing the influence of potential anharmonicit
and the quantum mechanical small parametere given in Eq.
~4!. The parameterj serves as an expansion parameter
the classical motion whilee governs the semiclassical ap
proximation. Since in the present case the density matri
calculated for dimensional coordinates within a quantum m
chanical range~smaller thanq0) around the barrier top, the
distinction betweenj and e is not necessary and we s
j5e. Second, due to the particular initial state~6! considered
here, the transformation~17! is used advantageously alread
for the solution of the equations of motion. The amplitude
the imaginary time pathq̄(s) is then readily seen to be a
most of the same order of magnitude than the initial coo
natesxi and r i . In the case of a general initial state cons
ered in II, the amplitude ofq̄(s) may be much larger then
xi andr i . On the other hand, the assumption made in II t
the initial coordinatesxi and r i are at most of ordere21/4 is
too restrictive for the present case, since the relevant va
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of r i become of ordere
21/22a as discussed above. Hence, w

have to extend the perturbative expansion in II and ret
terms neglected there. However, we perform this expans
only for the range of coordinates required for the particu
initial state~6! which simplifies the expansion substantiall
We remark that in this section the explicit dependence of
functionxi5xi(xi8,r i) according to Eq.~17! is suppressed to
keep the formulas more transparent.

A. Extremal imaginary time path

From Eq.~I43! the minimal action path in imaginary tim
obeys the equation of motion

q̈̄2E
0

u

ds8k~s2s8!q̄~s8!2
dV~ q̄!

dq̄

52 i E
0

t

dsK* ~s2 is!x~s!, ~18!

whereq̄(0)5r i2xi /2 andq̄(u)5r i1xi /2. The inhomogene-
ity on the right hand side couplesq̄(s) to the real time
motion.

As already addressed, the amplitude ofq̄(s) grows near
Tc and the harmonic approximation breaks down. A detai
analysis shows~see II! that the imaginary time motion be
comes marginally stable only in one direction in functio
space. Hence, to determine the imaginary time path for
anharmonic potential nearTc we follow II and make the
ansatz

q̄~s!5
1

u(l51

`

Q2lsin~n ls!1Q̂f~s!1q̂~s!. ~19!

Here,f(s) denotes the marginal direction in function spa
@Eq. ~II23!# and Q̂ the corresponding amplitude, while th
function q̂(s) contains boundary terms and is specified
Eq. ~II26!. Inserting Eq.~19! into Eq.~18! one gets equations
for the amplitudesQ2l and forQ̂ ~see II!. The equations for
the amplitudesQ2l can be solved perturbatively by expan
ing about the harmonic path. We set

Q2l5Q2l ,01eQ2l ,11O~e3/225a!, ~20!

where theQ2l ,0 are of ordere21/22a and describe the solu
tion in the harmonic approximation. TheQ2l ,1 are of order
e21/223a and take into account corrections due to anh
monic terms. This way we obtain from Eq.~18!

Q2l ,052ul$2n lxi12 f l@x~s!#% ~21!

and

Q2l ,1522c4eulE
0

u

dssin~n ls!F1u(l51

`

Q2l ,0sin~n ls!

1Q̂f~s!1q̂~s!G3. ~22!

Here, we used the abbreviation
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ul5@n l
2211un l uĝ~ un l u!#21. ~23!

Furthermore, the functionalsf n@x(s)# and alsogn@x(s)# that
appear in the equation forQ̂ ~see below! describe the cou-
pling to the real time motion and were already given in E
~II27! and ~II28!.

For the marginal mode amplitude one has from Eq.~18!
apart from corrections of ordere3/225a

L

e1/2
Q2c4e

2E
0

u

dsf~s!3F1u(l51

`

Q2l ,0sin~n ls!

1
2u

e1/2
Qf~s!1q̂~s!G35b̄ ~24!

with the inhomogeneity

b̄5
1

2u H r i2 i

u (
n52`

`

ungn@x~s!#J . ~25!

Here, as in II, we have introduced

Q[
1

2u
e1/2Q̂ ~26!

to make thee dependence more explicit. A cubic equatio
similiar to Eq.~24! has been derived previously in Eq.~II41!.
However, due to the differences discussed at the begin
of this section,~II41! contains at most terms linear inr i ,
while in Eq. ~24! powers ofr i up to r i

3 have been retained
Yet, the basic properties of the cubic equation~24! are the
same as those discussed in II, to where we refer for fur
details. We only note that for endpoints of order 1 and
high temperatures whereuLu is larger than ordere2/3 we
recover from Eq.~24! the harmonic solution.

B. Extremal real time paths

Let us start by considering the equation of motion for t
path r (s) which reads according to Eq.~I42!

r̈1
d

dsE0
s

ds8g~s2s8!r ~s8!1
1

2

d

dr
@V~r1x/2!1V~r2x/2!#

5 i E
0

t

ds8K8~s2s8!x~s8!1E
0

u

dsK* ~s2 is!q̄~s!. ~27!

For endpoints in the range assumed above, anharmonic t
in the potential become larger than ordere1/2. Hence, these
terms cannot be neglected, since they lead to terms at lea
order 1 in the minimal effective action. We have from E
~13!

1

2

d

dr
@V~r1x/2!1V~r2x/2!#52r1c4e

2r 31
3

4
c4e

2rx2

1O~e3/225a!. ~28!

The equation of motion~27! can then be solved perturba
tively using the ansatz

r ~s!5r 0~s!1er 1~s!1O~e3/225a! ~29!
.

ng

er
r

ms

t of
.

and also

x~s!5x0~s!1ex1~s!1O~e3/225a!, ~30!

where r 0(s) and x0(s) may be of ordere21/22a with
r 0(0)5r i , r 0(t)5r f and x(0)5xi , x(t)5xf . The correc-
tions r 1(s) and x1(s) are of order e21/223a and obey
r 1(0)5r 1(t)50 andx1(0)5x1(t)50.

Following the steps outlined in detail in II, we then obta
in leading order

r 0~s!5r h~s!2
G1~s!

L
@C1

1~s!2C1
1~ t !#@r i2 ix iC1

1~ t !#

1r 0
a~s!1G1~s!@g i~s!2g i~ t !#S b̄2

2uLQ

e1/2 D .
~31!

The real time path in the harmonic potentialr h(s) is given in
Eq. ~I66!. Further,

r 0
a~s!52u

Q

e1/2
G1~s!@C1

1~s!2C1
1~ t !#. ~32!

Here, we have introduced the propagatorG1(s) of the ho-
mogeneous equation~27! with the initial conditions
G1(0)50, Ġ1(0)51, which has the Laplace transform

Ĝ1~z!5@z21zĝ~z!21#21. ~33!

The time dependent functionsCn
1(t) are specified in terms o

A(t) andS(t) in Eq. ~II102!. The functiong i(s) is given in
Eq. ~II83! and b̄ in Eq. ~25!. Clearly, the last three terms i
Eq. ~31!, which depend through the amplitudeQ on the
anharmonicities of the potential, obey (r 02r h)(0)
5(r 02r h)(t)50. The first partr h(s) in Eq. ~31! guarantees
that r (s) fulfills the boundary conditionsr (0)5r i and
r (t)5r f . This harmonic path diverges forL→0 while
r 0(s) remains finite. In first order we gain

r 1~s!5E
0

s

ds8G1~s2s8!R1~s8!

2
G1~s!

G1~ t !E0
t

ds8G1~ t2s8!R1~s8! ~34!

with

R1~s!5E
0

u

dsK* ~s2 is!q̄1~s!1 i E
0

t

ds8K8~s2s8!x1~s8!

2c4eF r 0~s!31
3

4
r 0~s!x0~s!2G . ~35!

Here, we have used the decomposition

q̄~s!5q̄0~s!1eq̄1~s! ~36!

of the imaginary time path~19! where q̄0(s) is of order
e21/22a with q̄0(0)5r i2xi /2 andq̄0(u)5r i1xi /2. The cor-
rectioneq̄1(s) collects terms inq̄(s)2Q̂f(s) which are at
most of ordere1/223a.
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Finally, let us investigate the equation of motion for t
real time pathx(s). According to Eq.~I43! we have

ẍ2
d

dsEs
t

ds8g~s82s!x~s8!12
d

dx
@V~r1x/2!1V~r2x/2!#

50. ~37!

Further, from Eq.~13! one obtains

2
d

dx
@V~r1x/2!1V~r2x/2!#52x13c4e

2xr21
c4
4

e2x3

1O~e3/225a!. ~38!

To solve Eq.~37! perturbatively we use the ansatz~30!. The
equation of motion forx0(s) is homogeneous and the bac
ward equation of motion forr 0(s) for vanishing inhomoge-
neity @16#. Hence, we gain

x0~s!5xi
G1~ t2s!

G1~ t !
1xfF Ġ1~ t2s!2

G1~ t2s!

G1~ t !
Ġ1~ t !G .

~39!

Further, to next order ine one obtains~see also II! the solu-
tion for x1(s) as

x1~s!52c4eH E
s

t

ds8G1~s82s!F3r 0~s8!2x0~s8!

1
1

4
x0~s8!3G2

G1~ t2s!

G1~ t ! E
0

t

ds8G1~s8!

3F3r 0~s8!2x0~s8!1
1

4
x0~s8!3G J . ~40!

With Eqs. ~31! and ~34! @~39! and ~40!# the solution for
the real time pathr (s) @x(s)# has been found for end point
xf andr f smaller than order 1 but possibly largexi andr i at
most of ordere21/22a. In particular, the above analys
shows that both real time paths are also at most of o
 er

e21/22a. Hence, these solutions correspond to trajecto
with a turning point near the barrier top which remain the
fore in the barrier region for all times. In principle, the
exist also trajectories going forth and back through the w
region of the metastable potential. However, as we have
cussed in detail in II, these trajectories give relevant con
butions to the density matrix only in a parameter regi
which is not relevant here, namely, for extremely long tim
and small damping.

IV. SEMICLASSICAL DENSITY MATRIX

In the preceding section we have evaluated the minim
action paths. Employing the semiclassical approximation
now expand the functional integrals about these paths.
first step one determines the corresponding minimal effec
action~Sec. IV A! and in a second step the quantum fluctu
tions are considered~Sec. IV C! leading to the semiclassica
propagating function.

A. Minimal effective action

According to the investigations in II, the minimal effec
tive action in an anharmonic potential field can be written
the form

S~xf ,r f ,t,xi ,r i !5Sh~xf ,r f ,t,xi ,r i !1Sa~xf ,r f ,t,xi ,r i !,
~41!

whereSh(xf ,r f ,t,xi ,r i) denotes the harmonic result~I68!
and Sa(xf ,r f ,t,xi ,r i) is formally specified in Eq.~II78!.
Now, we insert the imaginary time pathq̄(s) and the two
real time pathsr (s) and x(s) determined in the previous
section intoSa. Using the equations of motion, we then g
after some algebra up to terms of order 1

Sa~xf ,r f ,t,xi ,r i !5S0
a~xf ,r f ,t,xi ,r i !

2c4e
2S1

a~xf ,r f ,t,xi ,r i !1O~e126a!

~42!

where
nd

the
t

S0
a~xf ,r f ,t,xi ,r i !5

i

2 H S r i1 xi
2 D @ q̇̄02 q̇̄h#~u!2S r i2 xi

2 D @ q̇̄02 q̇̄h#~0!J 1xf@ ṙ 02 ṙ h#~ t !2xi@ ṙ 02 ṙ h#~0!

2
1

2E0
t

dsE
0

u

dsK* ~s2 is!x0~s!@ q̄02q̄h#~s!, ~43!

with the harmonic pathsq̄h(s) and r h(s) given in Eqs.~I44! and ~I66!, respectively. Furthermore, one gains for the seco
term in Eq.~42! the compact result

S1
a~xf ,r f ,t,xi ,r i !5

i

4E0
u

dsq̄0~s!42
i

2E0
u

dsq̄0~s!3F1u(l51

`

Q2l ,0sin~n ls!G
1E

0

t

dsx1~s!C1~s!F uQ

c4e
3/21

i

2ec4
E
0

t

ds8x0~s8!g~s8!G1
1

4E0
t

ds@r 0~s!x0~s!314r 0~s!3x0~s!#. ~44!

The two expressions~43! and ~44! are now used to evaluate the minimal effective action explicitly as a function of
coordinates for times wherevRt@1. It is obvious that the functionSa contains anharmonicxi andr i dependent terms, so tha
an analytical evaluation of the form factor seems impossible. However, transforming to the coordinatexi8 according to Eq.
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~17!, one finds that the leading orderxi8r i coupling terms vanish. Also, the amplitudeQ studied in the following section is see
to become at most of ordere2a. With the transformation~17! one gains after a tedious but straightforward calculation

S0~xf ,r f ,t,xi8,r i ![Sh„xf ,r f ,t,xi~xi8,r i !,r i…1S0
a
„xf ,r f ,t,xi~xi8,r i !,r i…52

uQ

e1/2
axi81

uQ

e1/2
aD2

iuLQ

ae1/2
vRr i

2
i

2a2
Lr i

2S 1

4A~ t !2
1vR

2 D2xi8r ivR1vRr iD1
i

2aA~ t !
r f r i1vRxfr f1

i

2
Vxf

2 , ~45!

where we have neglected corrections which are exponential small for large times but have kept the leading orderxf and r f
dependent terms. EvaluatingS1

a as a function of the transformed coordinatesxi8, r i , one finds that apart from corrections th
are smaller than order 1 this part of the action is independent of the coordinatesxf and r f . We obtain

S1~xi8,r i ,t ![S1
a
„xf ,r f ,t,xi~xi8,r i !,r i…5 i2u5D4

Q4

e2
2 i

4u3Q3

ae3/2
r iFF3,1~ t !28A~ t !3C3,1~ t !2

u

2
g i~ t !D4G

2 i
3uQ2

a2e
r i
2@F2,2~ t !1uF3,1~ t !g i~ t !#2 i

Q

a3ue1/2
r i
3HF1,3~ t !1u2A~ t !J1~ t !2

3

2
g i~ t !u@F2,2~ t !24F̄2,2~ t !#J

1
i

8u3a4
r i
4@F4~ t !216F̄0,4#2

i

a2
r i
4F 1

2a2
A~ t !c1,3~ t !2

8

a2
A~ t !3c3,1~ t !2aG3~ t !1

1

4a
G1~ t !

2
12

a
A~ t !2c2,1~ t !26A~ t !c1,1~ t !1

g i~ t !

4a2u2
F1,3~ t !G . ~46!
en
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th
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Here, according to Eq.~II37!, one has

Dn5
2

uE0
u

dsf~s!n. ~47!

Moreover, we have introduced a set of auxiliary time dep
dent functions, which were in part already used in II,
describe the influence of the potential anharmonicities on
real time motion. These functions are given explicitly in A
pendix A.

B. Amplitude of the marginal mode

Before we evaluate the contribution of the quantum flu
tuations, let us write Eq.~24! for the amplitudeQ in explicit
form. First, by use of the solution~39! and ~40! of the real
time pathx(s), one obtains for the inhomogeneity on th
right hand side of the cubic equation

b̄[
1

2u H r i2 i

u (
n52`

`

ungn@x~s!#J
5

1

2u
@r i2 ix iC1

1~ t !2 ix f2A~ t !Ċ1
1~ t !#

2
i e

2uE0
t

dsx1~s!C1~s!, ~48!

whereC1
1(t) is given in Eq.~II102!. Note that the last term

on the right hand side is of ordere1/2. For timesvRt@1 the
time dependent termA(t)Ċ1

1(t) becomes exponentially
-

e

-

small ~see I! and can therefore be neglected. We remark t
a naive estimate of the magnitude of the amplitudeQ from
the cubic equation~24! and ~48! for untransformed coordi-
natesxi ,r i of order e21/2 leads nearTc to values ofQ of
order e21/3, i.e., Q̂ of order e25/6. Such large values ofQ̂
would require perturbation theory for the minimal actio
paths at quite large orders. However, using the transfor
tion ~17! we find from Eq.~48! for large times

b̄5 i
a

2u
xi82

LvR

2ua
r i2 i

a

2u
D~r i !2

i e

2uE0
t

dsx1~s!C1~s!.

~49!

For xi8 smaller than order 1 andD of ordere1/223a, it is now
seen from Eq.~24! that nearTc the relevant values of the
amplitudeQ remain of ordere2a also for larger i , i.e., Q̂ is
then of order e21/22a. Hence, the imaginary time pat
q̄(s) is of same order of magnitude asr i . This and the
decoupling ofxi8 and r i in the minimal effective action ex-
emplify the advantage in using the coordinate transforma
~17! to determine the stationary flux solution.

Now, Eq. ~49! combines with the right hand side of Eq
~24! to yield for the cubic equation for the amplitudeQ the
explicit form

L

e1/2
Q2c4e

1/22u3D4Q
31c4e

3u

a
@F3,1~ t !

216A~ t !3C3,1~ t !#Q
2r i2c4e

3/2
3

a2u
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3F12F2,2~ t !22F̄2,2~ t !18uA~ t !2J2~ t !GQri2
1c4e

2
1

4a3u3
@F1,3~ t !14u3A~ t !J1~ t !#r i

3

5 i
a

2u
xi82

LvR

2ua
r i2 i

a

2u
D~r i !. ~50!

The time dependent functionsFn,m(t) andF̄n,m(t) as well as
Cn,m(t) andJn(t) are given in Appendix A. The behavior o
the amplitudeQ as a function of temperature and coordina
following from a cubic equation of the above form has be
discussed in detail in II and in@17# to where we refer for
further details.
o

g

in
ls

ul
ri
s
n

Since thexi8 coordinate remains small whiler i becomes
large, it is convenient to set

Q5Qx1Qr , ~51!

whereQx andQr vanish forxi850 andr i50, respectively.
From Eq. ~50! the amplitudesQx andQr are found to be
determined by the coupled equations

L̃1~Qr ,r i !

e1/2
Qx12c4e

1/2u3D4Qx
32e

3uc4
a

@F3,1~ t !

216A~ t !3C3,1~ t !#Qx
2r i52 i

a

2u
xi8 ~52!

and
L1~Qx,0!

e1/2
Qr1c4e

1/22u3D4Qr
32e

3uc4
a

@F3,1~ t !216A~ t !3C3,1~ t !#Qr
2r i1e3/2

3c4
2a2u

@F2,2~ t !24F̄2,2~ t !

116uA~ t !2J2~ t !#Qrr i
22e2

c4
4a3u3

@F1,3~ t !14u3A~ t !J1~ t !#r i
35

LvR

2ua
r i1 i

a

2u
D~r i !. ~53!
ic

out
s.
m-

ribu-
the
de-
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-
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en
In the above equations we have introduced

L̃1~Q,r !5L1~Q,r !1c4e
3/2
24A~ t !2

au

3F4u2QrA~ t !C3,1~ t !1e1/2
J2~ t !

a
r 2G , ~54!

where

L1~Q,r !52L16c4eD4u
3Q22e3/2

6uc4
a

F3,1~ t !Qr

1e2
3c4
2a2u

@F2,2~ t !24F̄2,2~ t !#r
2. ~55!

As mentioned previously, for high temperatures the co
dinater i is of order 1/AuLu in the limit a→0 and Eq.~50!
becomes linear. Then, the partS0 of the minimal effective
action given in Eq.~45! leads to the harmonic result~I69!
and ~I74! while the second partS1 in Eq. ~46! becomes
smaller than order 1 and can be neglected. This is no lon
the case for temperaturesT>Tc , whereuLu is of ordere or
smaller and for all temperaturesT,Tc .

C. Quantum fluctuations and semiclassical
propagating function

With the minimal action~45! and~46! we have found the
leading order term of the path integral for the propagat
function ~11!. The path integral now reduces to integra
over periodic pathsh(0)5h(t)50 andh8(0)5h8(t)50 in
real time andy(0)5y(u)50 in imaginary time. Thereby the
relevant fluctuations give a contribution of order 1 to the f
effective action. We have shown in I and II that the cont
r-

er

g

l
-

bution of the real time fluctuations is given by the harmon
result ~I75! also for temperatures nearTc , while a corre-
sponding Gaussian approximation for the fluctuations ab
the imaginary time path is only valid for high temperature
The simple semiclassical approximation diverges for te
peratures nearTc where L→0. As discussed in II, this
comes from the fact that thef direction in function space
becomes unstable. As a consequence, higher order cont
tions in the expansion of the imaginary time path about
minimal action path have to be taken into account. The
tailed analysis is given in II. One finds for the contribution
the quantum fluctuations for temperatures nearTc

E D@h#D@h8#D@y#expH i

2
~S@q,q8,q̄#

2S@qma ,qma8 ,q̄ma# !J
5

1

8puA~ t !u
1

A4pu2
S )
n51

`

nn
2unDK~Q!. ~56!

Here, we have decomposed an arbitrary real time path
q(s)5qma(s)1h(s) whereqma(s) denotes the minimal ac
tion path in real time. Thereby, the pathsq(s) andq(s8) are
related to the sum and difference paths considered in
previous sections byr (s)5@q(s)1q8(s)#/2 and x(s)
5q(s)2q8(s). Correspondingly, one has for the imagina
time path q̄(s)5q̄ma(s)1y(s). The contribution of fluc-
tuations in the marginal direction in function space is giv
by

K~Q!5
1

A4p
E

2`

`

dYexp@2V~Q,Y!#, ~57!
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which remains finite foru5uc . The fluctuation potential for
the marginal mode amplitude is obtained as

V~Q,Y!5
1

4 FL1~Q,r i !Y
212u2c4D4e

3/2QY3

1
u

4
c4D4e

2Y4G1o~1!, ~58!

where the eigenvalueL1(Q,r ) is given in Eq.~55!. Here,
Q, which depends onxi8 and r i , is determined by the cubic
equation~50! or, equivalently, by Eqs.~52! and ~53!. For
high temperatures Eq.~56! reduces to the harmonic resu
~I77!. The features of the fluctuation potentialV(Q,Y) and
various limits of the fluctuation integralK(Q) as a function
of coordinates and temperature are discussed in II.

Now, with the minimal action and the contribution of th
quantum fluctuations evaluated for smalle we obtain the
semiclassical propagating function~11! as

J̃~xf ,r f ,t,xi8,r i !5
N

8puA~ t !u
K~Q!

3expH i2 @S0~xf ,r f ,t,xi8,r i !

2c4e
2S1~xi8,r i ,t !#J . ~59!

Here,

N5
1

Z

1

A4pu2
S )
n51

`

nn
2unD , ~60!

whereZ is a normalization constant which cannot be calc
lated from the equilibrium density matrix near the barrier t
but depends on the equilibrium distribution in the well r
gion. The functionS0 is given in Eq.~45! and the function
S1 in Eq. ~46!. The fluctuation integralK(Q) is defined in
Eq. 57! and the marginal mode amplitudeQ is determined by
Eq. ~50!. While related to Eq.~II115!, the result~59! gives
only the reduced propagating function introduced in Eq.~11!
but allows for larger values ofr i .

V. FORM FACTOR

Having evaluated the semiclassical propagating funct
we are now able to determine the time dependent den
matrix for large times. According to Eq.~9!, the nonequilib-
rium state near the barrier top is given by the equilibriu
density matrixru(xf ,r f) and the time dependent form facto
g(xf ,r f ,t). The equilibrium density matrix for coordinate
near the barrier top was already evaluated in Eq.~II123!. For
the range of end coordinates considered here, namely,xf and
r f smaller than order 1, this previous result reduces to

ru~xf ,r f !5NK~Q̄!expF i2Su~xf ,r f !G . ~61!

The amplitudeQ̄ is determined by the cubic equation
-

n,
ity

L

e1/2
Q̄22u3c4D4e

1/2Q̄35
r f
2u

~62!

apart from corrections smaller than ordere2/3. Furthermore,
the fluctuation integralK(Q̄) is given by Eq.~57! with a
fluctuation potentialV(Q̄,Y) of the form ~58!, however, the
eigenvalueL1(Q,r ) replaced byL1(Q̄,0). According to Eq.
~II125!, the minimal Euclidean action reads

Su~xf ,r f !5 i S u
Q̄r f
e1/2

1
V

2
xf
22c42u5D4Q̄

4D 1o~1!,

~63!

where we have kept also the leading orderxf dependent
term. Note that this action becomes of order 1 for coor
nates of ordere1/2.

According to Eqs.~10!, ~59!, and ~61! the form factor
takes the form

g~xf ,r f ,t !5E driU~xf ,r f ,t,r i !, ~64!

where

U~xf ,r f ,t,r i !5
1

8puA~ t !u E dxi8
K~Q!

K~Q̄!

3expH i2 @S0~xf ,r f ,t,xi8,r i !

2c4e
2S1~xi8,r i ,t !2Su~xf ,r f !#J Q~2r i !.

~65!

In the semiclassical limit the relevant contributions to t
integrals come from those coordinatesxi8 and r i for which
the exponent in Eq.~65! is of order 1 or smaller. Since th
actionSu(xf ,r f) is of order 1 or smaller only for coordinate
xf ,r f of order e

1/2 or smaller, we may restrict ourselves
this range of end coordinates. Furthermore, we assumeuLu to
be smaller than ordere and show later that the final resu
can be extended to larger values ofuLu. We start by evalu-
ating thexi8 integral ~65! in the following way. First, we
consider the integrand for fixedr i with r i smaller than order
e21/2 ~region 1!. Second, values ofr i larger than order
e21/2 ~region 2! are investigated. Both results are then co
bined to determineU(xf ,r f ,t,r i). It is advantageous to us
the decompositionQ5Qx1Qr introduced in Eq.~51! where
Qx is determined by Eq.~52! andQr by Eq.~53!. Also, from
Eqs.~45! and ~46!, we write the minimal effective action in
the form

S~xf ,r f ,t,xi8,r i !5S0~xf ,r f ,t,xi8,r i !2c4e
2S1~xi8,r i ,t !

5Sx~xi8,t !1S r~xf ,r f ,t,r i !1Sxr~xi8,r i ,t !

~66!

with a xi8 dependent partSx(xi8,t)5S(0,0,t,xi8,0) governing
the convergence of thexi8 integral, axi8 independent part
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S r(xf ,r f ,t,r i)5S(xf ,r f ,t,0,r i), and a termSxr(xi8,r i) con-
taining the remainingxi8r i coupling terms.

A. Region 1: Small r i

First let us consider the caser i50. Then, from Eq.~53!
we see thatQr50 so thatQx in Eq. ~52! is a time indepen-
dent function ofxi8 only. Accordingly, we obtain from Eqs
~45! and ~46!

Sx~xi8,t !5Sx~xi8!52
uQx

e1/2
axi822ic4D4u

5Qx
4 , ~67!

which is also independent of time and coincides after
formal replacementiaxi8→r f with the diagonal part of the
action~63! in the exponent of the equilibrium density matr
~61!. In the same way, the fluctuation integralK(Q) from
Eq. ~57! reduces toK(Q̄) in the prefactor of the equilibrium
density matrix ~61! with Q̄ substituted byQx . Further,
Sxr(xi8,0)50 and the remaining term in Eq.~66! is indepen-
dent ofxi8 and given by

S r~xf ,r f ,t,0!5xfr fvR1
i

2
Vxf

2 . ~68!

This is of ordere for coodinates of ordere1/2. Hence, one
obtains for thexi8 integration in Eq.~65! for r i50 an integral
of the form

Y[
a

A4p
E dxi8K~Qx!expF i2Sx~xi8!G . ~69!

Here,a is the coefficient~14! in the transformation~17!, and
the prefactor is chosen for convenience. SinceK(Qx) is at
most of ordere21/2, it is readily seen that the relevant co
tribution to the integral comes from thosexi8 values that are
of ordere1/2 or smaller. Correspondingly,Qx is then at most
of order 1. For high temperatures whereuLu is larger than
order e, the fluctuation integral reduces toK(Qx)51/AuLu
and the action toSx52 ia2xi8

2/2L. Thus, we regain the har
monic resultY51. For temperatures nearTc the integral
Y is of order 1 but the precise value must be calcula
numerically. In terms of the integralY the function
U(xf ,r f ,t,r i) defined in Eq.~65! reads forr i→0

U~xf ,r f ,t,r i !5
1

A4puS~ t !u

Y

K~Q̄!
expH 2

i

2
@S r~xf ,r f ,t,0!

2Su~xf ,r f !#J Q~2r i !, ~70!

where we have keptS r(xf ,r f ,t,0), which is at most of orde
e but contains the leading orderxfr f dependent terms. Now
with increasingr i the amplitudeQr also increases andxi8r i
coupling terms might become relevant, i.e., of order 1
larger. InsertingQ5Qx1Qr into Eqs. ~45! and ~46!, one
finds that forxi8 of ordere

1/2 and smallr i the leading order
coupling terms in Sxr are removed by a functionD
}e1/2Qr . From Eq.~53! we then conclude thatQr is smaller
than order 1 for coordinatesr i that are smaller than orde
e

d

r

e21/2. Consequently, the amplitudeQx is independent ofr i
apart from corrections smaller than order 1 and it can
determined from Eq.~52! for Qr5r i50. Furthermore,Sxr
andS r are both smaller than order 1 so that the above an
sis for r i→0 extends in the semiclassical limit to finiter i
values smaller than ordere21/2.

We are interested in the leading orderxf dependence of
the form factor which determines the flux~I125! across the
barrier. Now,xf dependent terms inS r are at most of order
e and are therefore relevant for ther i integration~64! only
for small values ofr i . From Eqs.~45! and ~46! we get for
ur i u!1

S r~xf ,r f ,t,r i !5Fxfr fvR1
i

2
Vxf

21
i

S~ t !
r f r i G@11o~1!#.

~71!

Here, the second term proportional toxf
2 is removed in the

exponent of Eq.~65! by the xf dependence of the actio
Su(xf ,r f). Further, theQ function restricts ther i integration
~64! to the halfplaner i<0. Now, as in Eq.~I90! we perform
a shift smaller than order 1,

r i5r i81 iṠ~ t !xf . ~72!

In view of Ṡ(t)/S(t)5vR following from Eq. ~16!, the ex-
ponent in Eq.~65! then becomes independent ofxf . Since
this shift is smaller than order 1 it causes only addition
xf dependent terms inSxr which are smaller than ordere3/2

and can therefore be neglected. Thus, one has for ther i8
dependent exponent in Eq.~65! in the region of small values
of r i8

S r~xf ,r f ,t,r i8!1Sxr~xi8,r i8!2Su~xf ,0!

5
i

S~ t !
r f r i81O~e3/2!, ~73!

while the upper bound of ther i8 integration is given by

iṠ(t)xf .
The above analysis gives the integral in Eq.~64! for all

values ofr i8 smaller than ordere21/2 apart from corrections
which are vanishing in the limite→0. We find

U~xf ,r f ,t,r i !5
1

A4puS~ t !u

Y

K~Q̄!
expF2

i

2
Su~0,r f !G

3Q@2r i82 iṠ~ t !xf #. ~74!

Due to the shift~72! the integrand in Eq.~64! is over r i8
values on a line parallel to the real axis where the argum
of theQ function is real.

B. Region 2: Large r i

As a next step we consider the integrand in Eq.~65! for
values ofr i which are larger than ordere

21/2 but at most of
ordere21/22a. In this regionxi8r i coupling terms inSxr be-
come of order 1 or larger and are therefore essential. Furt
more, for D(r i) of order e1/223a as assumed above, on
readily sees from Eq.~53! that Qr is then of ordere2a.
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Accordingly, r i dependent terms in the cubic equation~52!
for Qx can no longer be neglected. It should be noted tha
region 2 the coordinater i and the shifted coordinater i8 co-
incide apart from terms that are negligible in the semicla
cal limit. We now proceed in the following way. First, th
amplitudesQx andQr are calculated in the approximatio
needed, and the as yet unknown functionD is determined by
the condition that leading orderxi8r i-coupling terms inSxr

are removed. Afterwards, thexi8 integral is evaluated leadin
to U(xf ,r f ,t,r i) in region 2.

For xi8 of ordere
1/22a andQr of ordere

2a Eq. ~52! can
be solved perturbatively using the ansatz

Qx5Qx,01e2aQx,11O~e5a!, ~75!

whereQx,0 andQx,1 are both of orderea. Inserting this an-
satz into Eq.~52! we find

Qx,052
ia

2u

e1/2xi8

L̃1~Qr ,0 ,r !
~76!

and

e2aQx,153uc4e
3/2
F3,1~ t !216A~ t !3C3,1~ t !

aL̃1~Qr ,0 ,r i !
r iQx,0

2 .

~77!

The leading order terms of the amplitudeQr , that are rel-
evant for the exponent in Eq.~65!, can be evaluated in a
similiar way using

Qr5Qr ,01e4aQr ,11O~e5a!, ~78!

whereQr ,0 andQr ,1 are both of ordere2a ~for L→0). In
leading order the amplitudeQr ,0 is independent ofxi8 and
given by the cubic equation~53! with L1(Qx,0)50. For the
next order term we simply obtain

e4aQr ,152
L1~Qx,0,0!

L̃1~Qr ,0 ,r i !
Qr ,0 . ~79!

Now, insertingQx andQr into Eqs.~45! and~46!, we find
for the dominant coupling terms of ordere22a the result

Sxr~xi8,r i ,t !5Sxr
0 ~xi8,r i ,t !@11O~e2a!# ~80!

with

Sxr
0 ~xi8,r i ,t !52

uQr ,0

e1/2
axi81

uQx,0

e1/2
aD2xi8r ivR

28ic4u
5D4Qr ,0

3 Qx,01 ic4e
1/2
12u3

a
Qr ,0
2 Qx,0r i

3FF3,1~ t !28A~ t !3C3,1~ t !2
u

2
g i~ t !D4G
in

i-

1 ic4e
6u

a2
Qr ,0Qx,0r i

2@F2,2~ t !1uF3,1~ t !#

1 ic4e
3/2
Qx,0

a3u
r i
3HF1,3~ t !1u2A~ t !J1~ t !

2
3

2
g i~ t !u@F2,224F̄2,2#J . ~81!

InsertingQx,0 from Eq. ~76!, these terms are removed b
choosing a functionD}e1/2Qr ,0

3 . In view of Eq. ~53!, this
implies thatQr ,0}e1/2r i . To obtain explicit results we set

Qr ,05e1/2r iq/2a ~82!

and

D~r i !5 ic4
d~q!

a4u
e2r i

3 . ~83!

Inserting these expressions into Eq.~81!, one obtains from
the conditionSxr

0 50 that

d~q!5
5

2
u5D4q

326u3q2FF3,1~ t !212A~ t !3C3,1~ t !

2
u

4
g i~ t !D4G2

3

2
uq@F2,2~ t !14F̄2,2~ t !14uF3,1~ t !

216uA~ t !2J2~ t !#12uvRl̃1~q!

1
3

2
g i~ t !@F2,2~ t !24F̄2,2~ t !#2uA~ t !J1~ t !

2
1

u
F1,3~ t !. ~84!

Here, we have introduced the abbreviation

l̃1~q!5L̃1~e1/2q/2,a!/c4e
2uu5uc

. ~85!

This result is now inserted into the cubic equation~53! for
Qr ,0 , leading to a cubic equation forq. We obtain

3u3D4q
323uq2H 52F3,1~ t !2

u

2
D4@2vR1g i~ t !#

232A~ t !3C3,1~ t !J 23qHF3,1~ t !@2vR1g i~ t !#

232vRA~ t !3C3,1~ t !216A~ t !2
J2~ t !

u
1
4

u
F̄2,2J

5
F1,3~ t !

2u3
1A~ t !

J1~ t !

u
2

d~0!

u2
. ~86!

In particular, the above results confirm the assumptions m
previously thatD is at most of ordere1/223a while Qr is of
ordere2a or smaller for values ofr i that are at most of orde
e21/22a.
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The remaining coupling terms inSxr are of order 1. These
terms are simply removed by scaling thexi8 coordinate in the
following way. ForQx of ordere

a andQr of ordere
2a the

fluctuation integral K(Q) in Eq. ~65! reduces to
K(Q)5K(Qr)51/AL1(Qr ,0 ,r i) apart from corrections
smaller than order 1. Hence, scaling thexi8 coordinate ac-
cording toxi95xi8/AL1(Qr ,0 ,r i) and insertingQx andQr as
well asD from Eq. ~83! into the action, one can show tha
Sxr„xi9AL1(Qr ,0 ,r i),r i ,t… is independent ofr i . This com-
bines with the contribution fromSx to yield the exponent for
the xi9 integration in Eq.~65!

Sx„xi9AL1~Qr ,0 ,r i !,t…1Sxr„xi9AL1~Qr ,0 ,r i !,r i ,t…

5
i

2
z~ t !a2xi9

21o~1!. ~87!

Here, the functionz(t), which is positive and of order 1, i
given in Appendix B. In view of the above result thexi8
integral in Eq.~65! becomes Gaussian with relevant cont
butions from the domain wherexi8 is of order
AL1(Qr ,0 ,r i) or smaller, i.e.,xi8 is at most of ordere

1/22a as
assumed previously.

Accordingly, we get in the semiclassical limit for value
of r i larger thane

21/2 the result

U~xf ,r f ,t,r i !5
1

A4pz~ t !uS~ t !uK~Q̄!
expH i2 @S r~0,r f ,t,r i8!

2Su~0,r f !#J Q@2r i82 iṠ~ t !xf #. ~88!

Here, from Eqs.~45! and ~46!, the exponentS r reads

S r~0,r f ,t,r i8!52 ir f
r i8

uS~ t !u
1 ic4e

2
s r~ t !

a4
r i8

4, ~89!

wheres r(t) is given in Appendix B.

C. Stationary flux solution near Tc

To gain the form factor we now combine the results~74!
and~88! for U(xf ,r f ,t,r i ,xi) in regions 1 and 2. It is usefu
to scale ther i8 coordinate according tor i95r i8Y in region 1
andr i95r i8/Az(t) in region 2. Since both scaling factors a
of order 1, these transformations do not modify the region
and 2. Now, forr f of ordere

1/2 the actionS r in Eq. ~89! is of
order 1 if r i9 is of order e21/22a, but S r becomes smalle
than order 1 for smaller values ofr i9 within region 2. Hence,
the exponents in Eqs.~74! and~88! coincide near the bound
ary of regions 1 and 2. Furthermore, theQ function in Eq.
~74! may be approximated near the boundary
Q@2r i92 iYṠ(t)xf #5Q@2r i9#, while in region 2 we have

Q@2r i92 iṠ(t)xf /z(t)
1/2#5Q@2r i9# apart from negligible

corrections. The results in region 1 and 2 can thus
matched to yield the form factor nearTc
1

e

g~xf ,r f ,t !5
1

A4puS~ t !uK~Q̄!
E dri9

3expH i2 @S r„0,r f ,t,r i9z~ t !1/2…2Su~0,r f !#J
3Q@2r i92 iYṠ~ t !xf #. ~90!

For small values ofr i9 in region 1 thexf dependence of the
argument of theQ function is essential whileS r is smaller
than order 1. Correspondingly, the above integrand redu
to Eq. ~74!. On the other hand, forr i9 in region 2 thexf
dependence of theQ function can be neglected and the int
grand in Eq.~88! is regained fore→0.

The result~90! can be brought into a more convenie
form. To this purpose we put

z5~r i92r i
0!/uS~ t !u, ~91!

where the shiftr i
0 is defined implicitly by

S r„0,r f ,t,r i
0z~ t !1/2…2Su~0,r f !50. ~92!

For temperatures close toTc whereL is smaller than order
e, the r f dependence ofr i

0 can be determined analytically
Then, the linear term in Eq.~62! can be neglected against th
cubic one with the result

Q̄52S r f
4u4c4D4e

1/2D 1/3. ~93!

Inserting this solution into Eq.~63!, one obtains from Eqs
~89! and ~92!

r i
05h~ t !S~ t !

2u

e1/2
Q̄, ~94!

whereh(t) is determined by the quartic equation

h~ t !4
2Dr~ t !

uD4
2h~ t !z~ t !1/21

3

4
50 ~95!

with

Dr~ t !5S~ t !4
s r~ t !

a4
z~ t !2516A~ t !4s r~ t !z~ t !2. ~96!

This way the exponent in Eq.~90! takes the form

S̃~r f ,z,t ![S r„0,r f ,t,zuS~ t !uz~ t !1/21r i
0z~ t !1/2…2Su~0,r f !

5 iD r~ t !e
2z42 ih~ t !Dr~ t !8uc4e

3/2Q̄z3

1 ih~ t !2Dr~ t !24u
2c4eQ̄

2z2

1 ir fzS 8Dr~ t !

uD4
h3~ t !2z~ t !1/2D . ~97!

We note that in deriving this equation one has to take i
account thatS(t),0.

Now, with Eq.~97! we have transformed the exponent
Eq. ~90! into a quartic polynomial inz with Q̄-dependent
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coefficients. Clearly, for an initial equilibrium distribution
that is formally forQ@•# replaced by 1, the form factor mus
reduce tog(xf ,r f ,t)51. This suggests to compare the e
ponentS̃ with the fluctuation potentialV(Q̄,z) in Eq. ~58!
which is also a quartic polynomial inz with the sameQ̄
dependence of the coefficients as in Eq.~97!. We recall that
the above results are valid provided the asymptotic formu
~15! and ~16! for the functionsA(t) andS(t) can be used.
Then, a detailed analysis given in Appendix B shows that
to corrections which are negligible in the semiclassical lim
the functionsz(t) and Dr(t) are independent of time an
given by

z~ t !5z51, Dr~ t !5Dr5
u

8
D4 . ~98!

As a consequence, one obtains from Eq.~95! the real and
time independent solutionh(t)5h51, so that from Eq.~94!
the shift r i

05S(t)2uQ̄/e1/2. We note that 2uQ̄/e1/2 is the
unscaled marginal mode amplitudeQC . Now, we find that the
exponent in Eq.~97! is also independent of time with

i S̃~r f ,z,t !/25 i S̃~r f ,z!/252V~2Q̄,z!, ~99!

and the form factor may be written as

g~xf ,r f ,t !5
1

A4pK~Q̄!
E dzexp@2V~2Q̄,z!#

3Q@2zuS~ t !u2r i
02 iYṠ~ t !xf #. ~100!

The two relations in Eq.~99! are valid only in an intermedi-
ate region of time~plateau region!. A lower bound comes
from employing the asymptotic formulas~16! and ~17! that
are only valid for 1!exp(vRt). There is also an upper boun
of time since corrections to the minimal effective action~41!
must be smaller than order 1. Accordingly, we obtain fro
Eq. ~42! the relationa,1/6. In particular, anharmonic term
in the barrier potential~13! of the form c2ke

2k22q2k with
k.2 are then smaller than order 1. Hence, in the limit
small e the plateau region can be estimated, as far as or
of magnitude are concerned, byvR

21!t!u ln(e)u. Further-
more, from the fluctuation potential~58!, the relevant values
of z in Eq. ~100! are at most of ordere21/2. Since the order
of magnitude ofr i is given byS(t)z, this confirms the basic
assumption thatr i is at most of ordere

21/22a.
Now, after the transformationz85z2 iYvRxf the integral

~100! gives only contributions if z8,r i
0/S(t) where

S(t),0. Hence, the stationary form factor for temperatu
nearTc may be written as

gf l~xf ,r f !5
1

A4pK~Q̄!
E

2`

u~xf ,r f !
dzexp@2V~2Q̄,z!#,

~101!

where
s

p
,

f
rs

s

u~x,r !5
2u

e1/2
Q̄1 iYvRx. ~102!

Here, the fluctuation integral as well as the correspond
fluctuation potential are defined in Eqs.~57! and ~58!, re-
spectively, withL1(Q,r ) replaced byL1(Q̄,0). Further, the
integral Y is given in Eq. ~69!. Since K(Q̄) is of order
e21/2, it is readily seen that the width of the diagonal pa
gf l(0,r f) is of ordere1/2. For larger positive coordinatesr f
the functionu(0,r f) is negative and larger than order 1 s
that gf l(xf ,r f)→0. On the other hand, for negativer f and
ur f u larger than ordere1/2 the functionu(0,r f) is positive and
larger than order 1 so thatgf l(xf ,r f)→1. In particular,
gf l(0,0)51/2. We note that a formal continuation of the hig
temperature result~I102! would lead to a vanishing width a
Tc showing again the breakdown of the harmonic appro
mation. Further, evaluating Eq.~97! in the region of time
where Eq.~99! is valid and forz5r i

0/S(t), we find with
S r(0,r f ,t,0)50 that

i

2
Su~0,r f !5V„2Q̄,u~0,r f !…. ~103!

This identity holds also for high temperatures and ensu
that the form factor describes a nonequilibrium state with
stationary flux across the barrier which is independent
position ~i.e., of r f) as will be seen below.

Although the calculation presented above was carried
for temperatures whereuLu is smaller than ordere, the fluc-
tuation potential can now be used to extend Eq.~101! both to
higher and lower temperatures. This way we gain the cen
result of this article, namely, the expression

r f l~xf ,r f !5ru~xf ,r f !
1

A4pK~Q̄!
E

2`

u~xf ,r f !
dz

3exp@2V~2Q̄,z!# ~104!

for the stationary flux solution valid from high temperatur
down to temperatures slightly belowTc . Here, the equilib-
rium density matrix near the barrier topru(xf ,r f) is given in
Eq. ~61! andu(xf ,r f) in Eq. ~102!. For temperatures abov
Tc whereuLu is larger than ordere the solution of the cubic
equation~62! readsQ̄5e1/2r f /2uL. Then, the fluctuation po-
tential reduces to V(Q̄,z)52Lz2/4 and therefore
K(Q̄)51/AL. Hence, the high temperature result~I102! is
regained. For temperatures belowTc the amplitudeQ̄ grows
and terms such asc6eQ̄

6 neglected in the action~63! become
of order 1. Accordingly, the above flux solution can be us
only down to temperaturesT,Tc whereL is smaller than
ordere2/3.

D. Relation to equilibrium quantities

Before we proceed, let us collect the main formul
needed to get explicit values forr f l(xf ,r f). For given damp-
ing mechanismĝ(z) and inverse temperatureu the marginal
mode amplitudeQ̄ is determined from the cubic equatio
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~62! as a function ofr f . This leads to the actionSu(xf ,r f) in
Eq. ~63! and the fluctuation potential

V~Q̄,z!5
1

4 F ~2L16c4eD4u
3Q̄2!z212u2c4D4e

3/2Q̄z3

1
u

4
c4D4e

2z4G ~105!

from which we can gain the fluctuation integralK(Q̄) intro-
duced in Eq.~57!. On the one hand, these quantities give
equilibrium density matrix

ru~xf ,r f !5NK~Q̄!expF i2Su~xf ,r f !G . ~106!

On the other hand, they also determine the form factor of
stationary flux solution~104!.

In particular, we may relate the functionY defined in Eq.
~69!, which appears in formula~102! for u(xf ,r f), with equi-
librium quantities. Scaling the integration variablexi8 accord-
ing to q5axi8 and comparing the cubic equations forQx in
Eq. ~52! andQ̄ in Eq. ~62! as well as the exponentSx(xi8) in
Eq. ~67! with the actionSu(0,r f) in Eq. ~63!, we see that
Qx(q)5Q̄( iq) andSx(q)5Su(0,iq). Hence,Y can be ex-
pressed in terms of the analytically continued equilibriu
density matrix

Y5
1

A4pN
E dqru~0,iq !

5
1

A4p
E dqK„Q̄~ iq !…expF i2Su~0,iq !G . ~107!

Here, the amplitudeQ̄ must be evaluated from Eq.~62! with
r f replaced byiq. The analytic continuation ofru(0,q) leads
to a convergent integral for coordinates within the barr
region. Moreover, the quantityY can be shown to be only
function of the scaled bifurcation parameter

L̄5L/Ae22c4uD4. ~108!

From Eqs.~105! and~107! we find thatY may be written as

Y~L̄!5
1

4pE dq̄ dȳexpF2L̄Q̃21
3

2
Q̃4Gexp@2V̄~Q̃,ȳ!#.

~109!

Here, Q̃5Q̄(2u5c4D4)
1/4 is determined fromL̄Q̃2Q̃35 i q̄

with q̄5q/(2ue2c4D4)
1/4, and the scaled fluctuation poten

tial reads

V̄~Q̃,ȳ!5
1

4 F ~2L̄13Q̃2!ȳ 21Q̃ȳ 31
ȳ 4

8 G . ~110!

As a consequence, we obtain the important result that
stationary flux solution is completely determined by prop
ties of the equilibrium density matrix near the barrier t
evaluated already in II.
e

e

r

e
-

E. Form factor slightly below Tc

As we have already discussed in II and@17#, for tempera-
tures belowTc whereL is larger than ordere, the fluctuation
integral matches again onto a simple semiclassical appr
mation. Here, we consider the corresponding limit for t
flux solution. First, we investigate the equilibrium dens
matrix ~61! and afterwards the form factor~101!.

For coordinates near the barrier top the cubic equation
be solved perturbatively for temperatures whereL is larger
than ordere. Usinge/L3/2 as a small parameter we obtain fo
the stable branches the approximate result

Q̄
sn
se5sgn~2r f !S 6Q̄01

e1/2

4uL
ur f u

7
e3/2

L5/2

3r f
2

16u2~2c4u
3D4!

1/2D 1O~e5/2/L4!, ~111!

which is valid for end pointsr f smaller than orderL3/2/e.
Here, Q̄se denotes the branch which extends from the h
temperature region to lower temperatures whileQ̄sn is the
branch which newly emerges nearTc . The amplitudeQ̄0 of
the positive stable branch forr f50 is given by

Q̄05S L

2c4eu3D4
D 1/2. ~112!

Now, inserting Eq.~111! into the action~63! we have

S
sn
u;se~xf ,r f !52 i S L

e D 2 1

2c4uD4
7 i S 2L

e2c4uD4
D 1/2ur f u2 i

r f
2

4L

1
i

2
Vxf

21O~e/L5/2!. ~113!

Since the equilibrium density matrix nearTc and for coordi-
nates near the barrier top is independent of the particular
of the cubic equation~62!, it is convenient to evaluate th
fluctuation potential at the stable branchQ̄se. Then,
V(Q̄se,Y) exhibits two minima and one local maximum. Th
first minimum atY50 corresponds toQ̄se while the second
one atY15(Q̄sn2Q̄se)2u/e1/2 is associated with the stabl
branchQ̄sn . These minima are well separated for tempe
tures whereL is larger than ordere by a local maximum the
height of which is larger then order 1. Accordingly, in th
temperature range the fluctuation potential may be written
the form @17#

V~Q̄se,Y!5
L

2
Y2 ~114!

for fluctuation amplitudesY aroundY50 and

V~Q̄se,Y!5DS~r f !1
L

2
~Y2Y1!2 ~115!

nearY5Y1 with
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DS~r f ![
i

2
@Su;se~0,r f !2Su;sn~0,r f !#5S 2L

e2c4uD4
D 1/2ur f u.

~116!

Hence, the fluctuation integral~57! reduces to

K~Q̄se!5
1

A2L
$11exp@2DS~r f !#%. ~117!

This combines with Eq.~61! to yield the equilibrium density
matrix for temperatures belowTc . For coordinates of orde
e/AL or smaller we then have

ru~xf ,r f !5
2N

A2L
expF i2Su;se~xf ,0!GcoshF S L

2e2c4uD4
D 1/2r f G ,

~118!

whereN is given by Eq.~60!. The typical width of the mini-
mum is of ordere/AL. For end pointsr f within this region
both contributions of the stable branches must be taken
account, while for larger end points the consistent semic
sical approximation is determined by the branchQ̄se only.
Accordingly, for r f of ordere/AL or larger but smaller than
orderL3/2/e we gain

ru~xf ,r f !5
N

A2L
expF i2Su;se~xf ,0!G

3expF S L

2e2c4uD4
D 1/2ur f u1 r f

2

8LG . ~119!

Clearly, for end points of ordere/AL the result ~118!
matches onto Eq.~119!.

Let us now turn to the form factor~101!. Since
2Q̄se(q)5Q̄se(2q), the fluctuation potentialV(2Q̄se,z)
can be written in the form~114! and~115! with Y1 replaced
by 2Y1 . From Eq.~103! we then find forY5use(0,r ) and
Y1Y15usn(0,r ), respectively,

L

2
@u

sn
se~0,r !#25

i

2
S

sn
u;se~0,r !. ~120!

A simple calculation using Eq.~113! leads in leading orde
to

u
sn
se~x,r !5sgn~2r !S 6

uQ̄0

e1/2
1

ur u
L

D 1 iYvRx. ~121!

The integralY is expressed in Eq.~109! in terms of the
analytical continued equilibrium density matrixru(0,iq).
Now, the results~118! and ~119! can be used to evaluateY
in the semiclassical limit. For convenience, we choose
matching point of both results atr f5p(e2c4uD4/2L)1/2

With cosh(ix)5cos(x), wherex5q(L/2e2c4uD4)
1/2, we then

obtain from Eq.~109!
to
s-

e

Y5
1

A2pL̄2
expF i2Su;se~0,0!GF E

0

p/2

dxcos~x!

1E
0

`

dxcos~x!expS 2
x2

8L̄2D
1 i E

p/2

`

dxsin~x!expS 2
x2

8L̄2D G . ~122!

The second integral is exponentially small@of order
exp(2L2/e2)#, while the third one can be estimated to be
order e2/L2 which formally is of order\. Hence, in the
semiclassical limit, the first integral which is of order 1 lea
to

Y5
1

A2pL̄2
expS L̄2

2 D , ~123!

whereL̄ is given in Eq.~108!.
Now, from Eq.~104! one gains with Eqs.~114!–~117! and

~121! the form factor for temperatures slightly belowTc
where a simple semiclassical approximation is again valid

gf l~xf ,r f !5
1

2
$11exp@2DS~r f !#%

21

3H erfcF2S L

2 D 1/2use~xf ,r f !G
1exp@2DS~r f !#erfcF2S L

2 D 1/2usn~xf ,r f !G J .
~124!

Here, erfc(x)5(2/Ap)*x
`dzexp(2z2). For r f, ~.!0 the

function use(0,r ) is positive ~negative! while usn(0,r ) is
negative~positive! and the arguments of the erfc function
are both larger than order 1. Furthermore, for values ofur f u
larger then ordere/AL the function exp@2DS(r f)# becomes
exponentially small. Accordingly, we then hav
gf l(xf ,r f)'

1
2@12sgn(r f)# as expected. In particular, w

gain gf l(0,0)51/2 with DS(0)50. The width of the diago-
nal partgf l(0,r f) of the nonequilibrium state is therefore o
ordere/AL which is again of the same order as the width
the minimum ofru(0,r f). Since the amplitudeQ̄0 increases
with increasing inverse temperature the above analytical
sults are restricted to temperatures belowTc where L is
smaller than ordere2/3.

To illustrate these results we have depicted in Fig. 1
diagonal partgf l(0,q) of the form factor for various tempera
tures and Ohmic damping withg53 ande50.05. For these
parameters uc55.079 . . . . For T/Tc51.15 above and
T/Tc50.85 belowTc the functionuLu is slightly larger than
e. As one sees, the width ofgf l(0,q) decreases with decreas
ing temperature since thermal fluctuations also decre
NearTc the width is of ordere1/2 while belowTc the width
saturates at a value of ordere.

Figure 2 shows the quantityY as a function ofL̄.
Thereby, the integrals in Eq.~109! are evaluated numerically
by inserting the branchQ̄se. For L̄.0 and coordinatesq
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where exp@2DS(q)#!1, the contribution of the branchQ̄sn ,
which corresponds to a second minimum inV(Q̄se,Y), is
neglected according to Eq.~117!. Note that in the semiclas
sical limit Y is real. One sees thatY51 up to negligible
corrections down to temperatures nearTc . For temperatures
belowTc , however,Y increases exponentially according
Eq. ~123!. This reflects the fact that belowTc the equilibrium
density matrix~118! depends strongly on the classical acti
Su(0,0) of nonlocal paths in the inverted potential and is
longer of a Boltzmann-like form. This means that belowTc
quantum tunneling strongly enhances the probability to fi
states near the barrier top.

VI. MATCHING TO EQUILIBRIUM STATE
IN THE WELL AND DECAY RATE

In the previous section we have found an analytical
pression for the stationary flux state of a metastable sys

FIG. 1. Diagonal partgf l(0,q) of the form factor of the station-
ary flux solution~104! as a function of the scaled coordinateq for

Ohmic damping withĝ53 and various values of the temperatu
ratio T/Tc .

FIG. 2. The functionY given in Eq.~69! as a function of the
scaled bifurcation parameterL̄ ~solid line!. The dashed line repre
sents the approximate result~123! valid for temperatures slightly
belowTc . See text for details.
o

d

-
m

valid from high temperatures down to temperatures sligh
below Tc . As we have shown, the density matr
r f l(xf ,r f) depends on local properties of the barrier poten
only. Since, the metastable system is in thermal equilibri
in the well region, the flux state must reduce to a therm
equilibrium state for coordinates on the left side of the b
rier at a distance from the barrier top smaller than the typ
distance 1/e between the barrier top to the well bottom. In
we have shown that this implies a condition on the minim
damping strength. Here, we first give a corresponding c
dition for temperatures nearTc . Afterwards, this result is
used to derive the decay rate out of the metastable state
the flux solution.

A. Matching to equilibrium state in the well

For coordinatesqf ,qf8 on the left side of the barrier the
form factor~101! must approach 1 as one moves away fro
the barrier top. Inxfr f coordinates this means that

u12gf l~xf ,r f !u!1 ~125!

for values ofxf ,r f away from the barrier top. One can es
mate the region in the half-planer f,0 where Eq.~125! is
valid following the lines of reasoning in I. We find

uxf u,
1

2YvRAu
S 2ur f u
e2uc4D4

D 1/3. ~126!

Further, from Eq.~61! the equilibrium density matrix is non
vanishing essentially only for

uxf u,
r f
2/3

e1/3S 3V D 1/2 1

~4uc4D4!
1/6. ~127!

On the one hand, there should be valuesr f,0 with
ur f u!1/e where the two conditions~126! and ~127! hold si-
multaneously. On the other hand, we have to ensure tha
Eqs.~126! and~127! the coordinateuxf u is also much smaller
than 1/e. To estimate this latter condition we consider valu
of r f within the typical width of the diagonal part of th
nonequilibrium state. Then, only relation~127! is relevant
and yields

V@e2. ~128!

Now, a detailed analysis shows that Eq.~128! gives the most
stringent condition on the minimal damping strength.

Up to this point we have used the dimensionless form
lation introduced in Sec. II. Now, in order to facilitate
comparison with earlier results we shall return todimen-
sional unitsfor the remainder of this section. Then, conditio
~128! reads

V@
\v0

2

Vb
, ~129!

wherev0 denotes the oscillation frequency at the barrier to
Vb the barrier height with respect to the well bottom, a
V is given in Eq.~I111!. Following the discussion in I, we
make Eq.~129! more explicit by considering a Drude mod
with g(t)5gvDexp(2vDt). Since the condition~129! is rel-
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evant for small damping only, the functionV(b,g) can be
expanded according to Eq.~I118!. In particular, for vanish-
ing damping one hasuc[v0\bc5p which leads to
V(p/v0\,0)50. To determine the critical inverse temper
ture for small damping fromL(bc ,g)50 we expandL ac-
cording to Eq. ~I116!. Then, we putv0\bc5p1j with
j!1 and obtain in leading order

j524gL8~p/v0\!, ~130!

where L8(b)5]L(b,g)/]gug50 is given in Eq. ~I117!.
Note that the correctionj is positive sinceL8(b),0. With
this value forbc the condition~129! simply reads

g@
\v0

Vbk
, ~131!

wherek is given in Eq.~I121!.
In the limit vD@v0 ,g the Drude model behaves like a

Ohmic model except for very short times of order 1/vD .
Then, nearbc one obtainsk5 ln(vD\b)/p @see Eq.~I122!#.
Accordingly, Eq.~131! reads

g@
\v0p

Vbln~vD\b!
. ~132!

Comparing this with the high temperature result we see
both conditions coincide for temperatures slightly aboveTc
where Eq.~I123! is still valid. However, in contrast to the
high temperature case, the region of damping where the
state derived here becomes invalid is very narrow for te
peratures near and belowTc .

B. Decay rate

If condition ~131! is satisfied the flux solution can be use
to determine expectation values, in particular, the decay
G out of the metastable state. From Eq.~I124! one has in
coordinate representation

G5
Jf l
Z

5
\

iM S ]

]xf
r f l~xf ,0! D U

xf50

. ~133!

Here,Jf l denotes the unnormalized flux at the barrier top
is worthwhile to note thatr f50 is chosen in Eq.~133! for
simplicitly only since the flux is indeed independent of t
particular value ofr f as can readily be verified with Eq
~103!. The normalization constantZ is approximated as in
by the partition function of a damped harmonic oscilla
with frequencyvw

Z5
1

vw\b S )
n51

`
nn
2

nn
21nnĝ~nn!1vw

2 D exp~bVb!.

~134!

Here,Vb denotes the dimensional barrier height with resp
to the well bottom andvw is the well frequency. Inserting
Eq. ~104!, which is valid for high temperatures as well as f
temperatures slightly belowTc , into Eq. ~133! we obtain in
dimensional units
at

x
-

te

t

r

t

G5
vw

2p

vRY

v0
S )
n51

`
nn
21nnĝ~nn!1vw

2

nn
21nnĝ~nn!2v0

2 D exp~2bVb!.

~135!

Here, the Grote-Hynes frequencyvR @20# is given by the
positive solution ofvR

21vRĝ(vR)5v0
2 . When this is com-

pared with the result~I127! we see that the anharmonicitie
of the barrier potential lead to an additional factorY in the
vicinity of Tc . The functionY is expressed in Eq.~107! in
terms of the analytically continued equilibrium density m
trix ru(0,iq) near the barrier top and depicted in Fig. 2. A
already discussed in Sec. V E one hasY51 from high tem-
peratures down to temperatures nearTc while below Tc
quantum tunneling causes an exponential increase ofY. This
behavior depends essentially onSu(0,0) that is the action of
classical paths in the inverted barrier potential w
q(0)52q(u) and q̇(0)52q̇(u). For T.Tc the only pos-
sible path is then the trivial oneq(s)50 with Su(0,0)50
while for T,Tc oscillating solutions with differentq(0) and
q̇(0) but the same nonvanishing action emerge.

Hence, for temperatures aboveTc we recover from Eq.
~135! the well-known result for thermally activated deca
including quantum corrections@21# while for lower tempera-
tures quantum tunneling leads to an enhancement of the
This behavior of the escape rate differs from predictio
based on purely thermodynamic methods@8,9#. A semiclas-
sical approximation of the functional integral for the par
tion function together with an analytic continuation accor
ing to Langer @10# yields for the fluctuation modes th
eigenvaluesln

b[nn
21nnĝ(nn)2v0

2 . The first eigenvalue
l1
b vanishes at a temperatureT0,Tc . In the undamped cas

one hasT05Tc/2. The eigenvaluesln
b are characteristic for

the imaginary time motion in a harmonic barrier potent
and the thermodynamic rate theory does not lead to an in
bility nearTc .

In the rate formula~135! the ln
b appear since aroundTc

only the marginal mode amplitudeQ is affected essentially
by anharmonicities of the potential. However, for lower te
peratures the magnitude of the imaginary time path increa
and anharmonicities are important for all eigenvalues of
second order variational operator in the fluctuation path
tegral. As a consequence, the rate formula~135! is then no
longer valid and its corresponding extension to low tempe
tures exhibits no singularities for temperatures near and
low T0.

ACKNOWLEDGMENTS

The authors would like to thank G.-L. Ingold and E. Po
lak for helpful discussions. This work was supported by t
Deutsche Forschungsgemeinschaft~Bonn!.

APPENDIX A: AUXILIARY FUNCTIONS

In this appendix we collect functions needed in Sec.
These functions can be evaluated for given inverse temp
ture u and macroscopic damping kernelg(s) or Laplace
transformĝ(z).

The Fn,m(t) and F̄n,m(t) describing the influence of an
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harmonicities on the imaginary time motion are defined b

Fn,m~ t !5
2

uE0
u

dsf~s!n

3F (
n52`

`

uncos~nns!E
0

t

dsgn~s!Gi~ t,s!Gm
~A1!

and

F̄n,m~ t !5
2

uE0
u

dsf~s!nH 14 ~2s2u!1(
l51

`

ulF12n l ĝ~n l !

n l

1E
0

t

ds fl~s!Gi~ t,s!Gsin~n ls!J m

. ~A2!

Here, the auxiliary functionsgn(s) and f l(s) are defined in
Eqs. ~II29! and ~II30!, respectively, and Gi(t,s)
5G1(t2s)/G1(t).

To describe the anharmonic real time motion we need
classes of functions. The functions

Gm~ t !5E
0

t

dsGi~ t,s!mGf~ t,t2s!42m, ~A3!

whereGf(t,s)5G1(t)]Gi(t,s)/]t remain finite for vanish-
ing damping. The other functions describe damping indu
couplings between real time and imaginary time paths. T
functiong i(t) was already introduced in Eq.~II83!. Further,

Cn,m~ t !5E
0

t

Gi~ t,t2s!nGi~ t,s!mGf~ t,t2s!42n2m

3@C1
1~s!2C1

1~ t !#n ~A4!

and

cn,m~ t !5E
0

t

dsGi~ t,t2s!nGi~ t,s!m

3Gf~ t,t2s!42n2m@R̂~ t,s!2R̂~ t,t !#n. ~A5!

Here, the functionC1
1(t) defined in Eq.~II102! reduces to

C1
1(t)52a for times where the asymptotic formulas~15!

and ~16! are valid. In this region of time one has

R̂~ t,s!522vRa1vR

S~s!

2A~s!
1a

Ȧ~s!

A~s!

1
1

4uA~ t !A~s! (
n52`

` H uncosh@nn~ t2s!#

1E
s

t

ds8@A~s82s!2A~s2s8!#cosh@nn~ t2s8!#J .
~A6!

Finally, the functions
e

d
e

I n,m~ t !5E
0

t

dsGi~ t,s!Gi~ t,t2s!n1 lGf~ t,t2s!32n2 l

3@C1
1~s!2C1

1~ t !# l@R̂~ t,s!2R̂~ t,t !#n ~A7!

contain bothC1
1(s) andR̂(t,s). These latter functions do no

appear explicitly in the main text since for convenience
have introduced the linear combinations

J1~ t !5
1

2
C1,3~ t !26a2C1,1~ t !224A~ t !2I 2,1~ t !

124aA~ t !I 1,1~ t ! ~A8!

and

J2~ t !52A~ t !I 1,2~ t !1aC2,1~ t !. ~A9!

The functionsGn(t), Cn,m(t), cn,m(t), andI n,m(t) are given
as integrals over times 0<s<t with integrands which vanish
ats50 ands5t. The integrands become exponentially sm
for timess where the asymptotic formulas~15! and~16! are
valid.

In general, these functions can be evaluated explic
only numerically. However, in the limits of vanishing an
very strong damping analytical results are available. Let
first consider the case of vanishing damping. Then, only
functionsDn defined in Eq.~47!, and F̄n,m(t) as well as
Gm(t) are finite while the other ones vanish. Since the a
iliary functions gn(s)5 f n(s)50, the functionsF̄n,m(t) are
independent of time. Then, withf52sin(s)/2 the integrals
defining the relevant functions can be done analytically. W
obtain

D45
3

64
, F̄2,25

p2

256
. ~A10!

The functionsGm(t) are not relevant since the correspondi
prefactors in the minimal effective action vanish in the u
damped case.

For very strong damping the equationz21zĝ(z)51 has a
very small positive solutionvR'1/g with g5ĝ(0), while
the negative solutions are of orderg or larger. As a conse-
quence, the functionA(t) contains transient terms for time
of order 1/g or smaller only. Then, from the asymptotic form
~15! we see that for times 1/g!t!g one has
A(t)'21/2g. Hence, we gain in leading order in this rang
of time g i(t)5g. Furthermore, with increasing dampin
strength alsouc increases so thatn1 becomes very small
Thus, the leading order terms of the functions defined ab
are determined by the static frictiong. As a consequence, fo
times 1/g!t!g these functions become in leading ord
independent of time with

D45
2

u4
, Fn,m5

2gm

un
, F̄2,25

1

24
, F̄0,45

u4

640
.

~A11!

The functionsGn(t), Cn,m(t), cn,m(t), and I n,m(t) are at
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most of order 1/g since the integrands in these time integr
give essential contributions only within a time interval
order 1/g. We have evaluated the above functions a
h

n-

in

t

o

numerically for Ohmic damping withg(t)52gd(t). This
shows that the results for strong damping can be used
g*4.
APPENDIX B: z„t… AND Dr„t…

In Sec. V we have introduced two auxiliary functionsz(t) andDr(t) given by

z~ t !5
3

l̃1~q!
HD4u

3q22uqS 74F3,1~ t !224A~ t !3C3,1~ t !2
u

4
@g i~ t !12vR#D4D1

1

4
F3,1~ t !3@g i~ t !12vR#

1
1

4u
@F2,2~ t !28F̄2,2~ t !#1

8

u
A~ t !2J2~ t !18vRA~ t !3C3,1~ t !J ~B1!

and

Dr~ t !516A~ t !4z~ t !2s r~ t ! ~B2!

with

s r~ t !5
9

8
u5D4q

41u3q3H u

2
D4@8vR1g i~ t !#132A~ t !3C3,1~ t !2

5

2
F3,1~ t !J 212u2q2H F̄2,2~ t !

4u
2

u

8
vRD4@2vR1g i~ t !#

1
u

16
F3,1~ t !@12vR1g i~ t !#2A~ t !2

J2~ t !

u
210vRA~ t !3C3,1~ t !J 26vRqH 2F̄2,2~ t !1

u

2
F3,1~ t !@2vR1g i~ t !#

216uvRA~ t !3C3,1~ t !28A~ t !2J2~ t !J 1
1

8u3
@16F̄0,4~ t !2F0,4~ t !#1

3

2u
@F2,2~ t !24F̄2,2~ t !#@2vR1g i~ t !#2

1

4u2
F1,3~ t !

3@4vR2g i~ t !#2vRA~ t !J1~ t !1
48

u
vR
2J2~ t !1

1

2
A~ t !c1,3~ t !28A~ t !3c3,1~ t !2a3G3~ t !1

a

4
G1~ t !212aA~ t !2c2,1~ t !

26A~ t !a2c1,1~ t !. ~B3!
l

-

sly
Obviously, the functionsz(t) andDr(t) depend explicitly on
A(t) but not onS(t). After determining the solutionq of the
cubic equation~86! they can be calculated numerically wit
the functions defined in Appendix A.

In the sequel we studyz andDr for vanishing and strong
damping which allows for analytical results. First, for va
ishing damping one hasA(t)52sinh(t)/2 andS(t)5aA(t)
so that the transient term exp(2t) in A(t) andS(t) decreases
on the same time scale on which the asymptotic term
creases in time. As a consequence,Ȧ(t)/A(t) contains expo-
nentially small terms for timest@1 which are, however, no
negligible, and one must resubstitutevR by Ȧ(t)/A(t) in the
above formulas. This way using Eq.~A10! the cubic equa-
tion ~86! reduces to

pq31q2
Ȧ~ t !

A~ t !
2

q

3p
5

Ȧ~ t !

3p2A~ t !
. ~B4!

This equation has three real solutions

q152
Ȧ~ t !

pA~ t !
, q2,356

1

A3p
. ~B5!

From Eq.~55! one readily sees that only the solutionq1 is
stable while the other ones are unstable. Insertingq1 into Eq.
-

~85! one obtainsl̃1(q1)53p/64 up to exponentially smal
corrections. Further, evaluating thenz from Eq. ~B1! one
finds z(t)5z51. To determineDr we have to take into
account that for vanishing dampinguc5p so that
a5cot(uc/2)/25S(t)50. Since S(t)/a remains finite for
large times, the functionDr(t) is nonvanishing also for van
ishing damping. Now, due toa50 the terms containing the
functionsGn(t) vanish. Then, insertingq1 into Eq. ~B3! and
collecting the remaining terms one obtains

s r~ t !5
3p

512
S Ȧ~ t !2

A~ t !2
21D 253p

512

1

sinh~ t !4
. ~B6!

This leads with Eq.~B2! to Dr(t)5Dr53p/512. On the
other hand Eq.~A10! leads touD4/853p/512 and thus to
Eq. ~98! in this limit.

For very strong damping and times 1/g!t!g one can set
Ȧ(t)/A(t)51/g. Accordingly, we gain in leading order from
Eq. ~86! in this range of time

q322
g

u
q22

g2

u2
q50. ~B7!

The only solution which is stable and extends continuou
to the high temperature solutionq521/gu is given by
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q150. A more detailed analysis taking into account a
next order terms shows thatq1}O(1/g). Then, we obtain
from Eq. ~B1!

z~ t !5z5
3

l̃1~0!

g2

u3
@11O~1/g!#511O~1/g!. ~B8!

Furthermore, one has from Eq.~B3!

s r~ t !5s r5
g4

4u3
@11O~1/g!#, ~B9!
,

which leads toDr51/4u3. On the other hand, Eq.~A10!
givesuD4/851/4u3.

This way we have shown analytically for vanishing a
very strong damping in the region of time where the asym
totic formulas ~15! and ~16! are valid that z51 and
Dr5uD4/8 up to corrections negligible in the semiclassic
approximation. Since we were not able to verify these re
tions in general, we have performed numerical calculatio
for Ohmic damping withg(t)52gd(t) confirming the va-
lidity of Eq. ~98!.
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